首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The kinetics of explosive boiling-up of liquid argon has been investigated at negative pressures created by the reflection of a compression pulse 3-5 mus long from the free surface of a liquid by the method of liquid pulse heating on a thin platinum wire (with a rate of temperature increase of about 1 Kmus). The limiting superheats T(*) (stretches p(*)), the effective nucleation rate J(*), and the derivative G(T)=(d ln JdT)(T=T(*) ) have been determined by experimental data on the thermal perturbation of a wire probe and the results of solution of the problem on the initial stage of explosive boiling-up of a liquid. The experimental data are compared with homogeneous nucleation theory.  相似文献   

4.
The dynamics of phase transformation due to homogeneous nucleation has long been analyzed using the classic Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory. However, the dynamics of phase transformation due to heterogeneous nucleation has not been studied systematically even though it is vitally important technologically. In this report, the author studies the dynamics of heterogeneous nucleation theoretically and systematically using the phenomenological time-dependent Ginzburg-Landau (TDGL)-type model combined with the cell dynamics method. In this study the author focuses on the dynamics of phase transformation when the material is sandwiched by two supporting substrates. This model is supposed to simulate phase change storage media. Since both homogeneous and heterogeneous nucleations can occur simultaneously, the author predicts a few scenarios of phase transformation including homogeneous nucleation regime, heterogeneous nucleation regime, and the homogeneous-heterogeneous coexistence regime. These predictions are directly confirmed by numerical simulation using the TDGL model. The outcome of the study was that the KJMA formula has limited use when heterogeneous nucleation exists, but it could still give some information about the microscopic mechanism of phase transformation at various stages during phase transformation.  相似文献   

5.
Molecular dynamics simulations have been used to study the atomistic scale dynamics of superheated crystals under different temperature and pressure conditions. The limit of superheating was determined by monitoring a suitable order parameter. The occurrence of homogeneous melting was related to the generation of structural defects characterized by the presence of pairs of particles having defective coordination. At temperatures close to the homogeneous melting point such particles formed extended stringlike clusters. Particles involved in clusters change continuously as a result of local structural rearrangements. These can result in the displacement of particles from one lattice site to another, thus providing a mechanism for self-diffusion.  相似文献   

6.
Homogeneous nucleation and growth of zinc from supersaturated vapor are investigated by nonequilibrium molecular dynamics simulations in the temperature range from 400 to 800 K and for a supersaturation ranging from log S=2 to 11. Argon is added to the vapor phase as carrier gas to remove the latent heat from the forming zinc clusters. A new parametrization of the embedded atom method for zinc is employed for the interaction potential model. The simulation data are analyzed with respect to the nucleation rates and the critical cluster sizes by two different methods, namely, the threshold method of Yasuoka and Matsumoto [J. Chem. Phys. 109, 8451 (1998)] and the mean first passage time method for nucleation by Wedekind et al. [J. Chem. Phys. 126, 134103 (2007)]. The nucleation rates obtained by these methods differ approximately by one order of magnitude. Classical nucleation theory fails to describe the simulation data as well as the experimental data. The size of the critical cluster obtained by the mean first passage time method is significantly larger than that obtained from the nucleation theorem.  相似文献   

7.
This review concentrates on the progress of modeling the nucleation process of particles by the balanced nucleation-growth (BNG) process. The BNG model will be compared with other models that try to predict material nucleation. Compared to other models, the BNG model allows quantifying the nucleation rate, maximum growth rate, and supersaturation during the nucleation period as a function of nucleation efficiency and maximum growth rate of the crystals. From this model, equations are derived that correlate the number of stable crystals formed with molar addition rate of reactants, solubility of the crystals, and temperature. The BNG model predicts the experimental result that many crystallization processes result in a limited number of crystals followed by growth. The model also predicts that factors like diffusion and kinetically controlled growth process, Ostwald ripening agents and growth restrainers control the crystal number. Equations are given for each of the variables that agree with experiments. The BNG model predicts the conditions for renucleation (formation of new crystals during precipitation). It leads to new equations for the prediction of crystal number and crystal size during controlled continuous precipitation in the continuous stirred tank reactor (CSTR) as a function of precipitation conditions.  相似文献   

8.
Photodissociation of the ionized argon pentamer, Ar(5)(+), is studied using an extended diatomics-in-molecules interaction model with the inclusion of the spin-orbit coupling and various dynamical approaches. A thorough comparison with the experimental data available in the literature is presented, including photofragment abundances and their kinetic and internal energy distributions. New predictions are reported for ultraviolet photoexcitation energies, a range that has not been studied before either experimentally or theoretically.  相似文献   

9.
Recently we discovered that under certain conditions new crystal growth (branch) can be induced on specific crystalline planes of the same material. This is a new phenomenon and is in sharp contrast to typical nucleation and growth in which a crystal will simply grow larger in preferred directions depending on the surface energy of the specific crystalline planes. Based on our observation, we developed a sequential nucleation and growth technique offering the power to assemble complex hierarchical crystals step-by-step. However, the key questions of when and how the secondary nucleation takes place have not been answered. Here we systematically study secondary ZnO crystal growth using organic diamine additives with a range of chain lengths and concentration. We found that ZnO branches form for a narrow diamine concentration range with a critical lower and upper critical nucleation concentration limit, which increases by about a factor of 5 for each additional carbon in the diaminoalkane chain. Our results suggest that the narrow window for secondary growth is dictated by the solubility of the ZnO crystals, where the low critical nucleation concentration is determined by slight etching of the surface to produce new nucleation sites, and the upper critical concentration is determined by the supersaturation concentration. Kinetic measurements show that the induction time and growth rate increase with increasing diamine concentration and follow classical nucleation and growth theory. Observations of branch morphological evolution reveal the mechanisms guiding the tunable crystal size and morphology.  相似文献   

10.
A united scheme for the kinetics of electrochemical nucleation and the growth of a new phase is presented. The peculiarities of ion-transfer kinetics during electrochemical phase formation are analysed. The influence of the exchange current density at the electrolyte/cluster of the new phase interface on the nucleation rate, the nucleation induction time and the growth rate is reported.  相似文献   

11.
The dynamics and thermodynamics of small Ar(n) (+) clusters, n=3, 6, and 9, are investigated using molecular dynamics (MD) and exchange Monte Carlo (MC) simulations. A diatomic-in-molecule Hamiltonian provides an accurate model for the electronic ground state potential energy surface. The microcanonical caloric curves calculated from MD and MC methods are shown to agree with each other, provided that the rigorous conservation of angular momentum is accounted for in the phase space density of the MC simulations. The previously proposed projective partition of the kinetic energy is used to assist MD simulations in interpreting the cluster dynamics in terms of inertial, internal, and external modes. The thermal behavior is correlated with the nature of the charged core in the cluster by computing a dedicated charge localization order parameter. We also perform systematic quenches to establish a connection with the various isomers. We find that the Ar(3) (+) cluster is very stable in its linear ground state geometry up to about 300 K, and then isomerizes to a T-shaped isomer in which a quasineutral atom lies around a charged dimer. In Ar(6) (+) and Ar(9) (+), the covalent trimer core is solvated by neutral atoms, and the weakly bound solvent shell melts at much lower energies, occasionally leading to a tetramer or pentamer core with weakly charged extremities. At high energies the core itself becomes metastable and the cluster transforms into Ar(2) (+) solvated by a fluid of neutral argon atoms.  相似文献   

12.
The homogeneous nucleation and growth in a simplest two-dimensional phase field model is numerically studied using the cell dynamics method. The whole process from nucleation to growth is simulated and is shown to follow closely the Kolmogorov-Johnson-Mehl-Avrami (KJMA) scenario of phase transformation. Specifically the time evolution of the volume fraction of new stable phase is found to follow closely the KJMA formula. By fitting the KJMA formula directly to the simulation data, not only the Avrami exponent but the magnitude of nucleation rate and, in particular, of incubation time are quantitatively studied. The modified Avrami plot is also used to verify the derived KJMA parameters. It is found that the Avrami exponent is close to the ideal theoretical value m=3. The temperature dependence of nucleation rate follows the activation-type behavior expected from the classical nucleation theory. On the other hand, the temperature dependence of incubation time does not follow the exponential activation-type behavior. Rather the incubation time is inversely proportional to the temperature predicted from the theory of Shneidman and Weinberg [J. Non-Cryst. Solids 160, 89 (1993)]. A need to restrict thermal noise in simulation to deduce correct Avrami exponent is also discussed.  相似文献   

13.
Melting and decay of the superheated sI methane structure are studied using molecular dynamics simulation. The melting curve is calculated by the direct coexistence simulations in a wide range of pressures up to 5000 bar for the SPC/E, TIP4P/2005 and TIP4P/Ice water models and the united-atom model for methane. We locate the kinetic stability boundary of the superheated metastable sI structure that is found to be surprisingly high comparing with the predictions based on the classical nucleation theory.  相似文献   

14.
15.
《Comptes Rendus Chimie》2002,5(11):765-771
Calculations were performed of the crystal growth rates in lithium disilicate glass in the low-temperature regime where homogeneous nucleation is observed. The computations were executed using the gain-loss (Becker–Doring) equations that form the framework of Classical Nucleation Theory (CNT). The growth rates were obtained in several different ways, using various choices for the kinetic model, the generalized diffusion coefficient, and the physical input data. The results of these calculations are compared with recently obtained experimental values of the growth rates.  相似文献   

16.
The metadynamics method for accelerating rate events in molecular simulations is applied to the problem of ice freezing. We demonstrate homogeneous nucleation and growth of ice at 180 K in the isothermal-isobaric ensemble without the presence of external fields or surfaces. This result represents the first report of continuous and dynamic ice nucleation in a system of freely evolving density. Simulations are conducted using a variety of periodic simulation domains. In all cases the cubic polymorph ice I(c) is grown. The influence of boundary effects on estimates of the nucleation free energy barrier are discussed in relation to differences between this and earlier work.  相似文献   

17.
The possibility to conduct simulations of homogeneous nucleation of argon from a supersaturated vapor phase using a microcanonical or NVE ensemble is evaluated (NVE: number of particles N, volume V, and energy E are constant). In order to initiate a phase separation kinetic energy is removed from the system in one step which transfers the system into a supersaturated state. After this temperature jump the simulation is continued in a NVE ensemble. The simulations are performed for different initial-state points and different temperature jumps. The cluster formation and growth over the course of the adiabatic simulations are analyzed. The progression of the temperature being related to the cluster size in NVE systems is traced. Also the influence of the size of the simulation system is investigated. For a certain range of low supersaturation a dynamic coexistence between two states has been found. Furthermore, the obtained nucleation rates are correlated with two simple functions. By applying the nucleation theorems to these functions the size and excess energy of the critical cluster are estimated. The results are consistent with other theoretical data and experimental data available in the literature.  相似文献   

18.
聚苯胺的成核及生长机理   总被引:15,自引:0,他引:15  
蔡林涛  姚士冰  周绍民 《化学学报》1995,53(12):1150-1156
本文通过恒电位阶跃法研究了聚苯胺在不同介质中的成核与膜的生长过程动力学。结果表明, 在硫酸介质中, 成核过程为扩散控制下的三维连续成核, 得到疏松、多孔的膜; 而在高氯酸介质中, 成核则是电化学动力学控制下的二维成核过程。在高电位时(E>1.02V, vs, SCE)为二维连续成核过程, 而在较低的电位时, 主要表现为二维瞬时成核, 膜层呈网状且致密。  相似文献   

19.
A dynamical model based on an effective potential is employed to describe metastability and the related time scales for evaporation processes in ionized Argon clusters (Ar) n + , withn from 6 up to 27. The effective interaction, and its dependence on the cluster size, is obtained by combining previous ab initio results and Monte Carlo simulations for the above systems with an assumed linear variation of the cluster volume with then number of monomers. The overall metastability of the excited clusters is linked to the possible local rotational ‘temperature’ of such species and the distributions of the ensuing lifetimes are analysed as function of cluster size and of different nucleation mechanisms. It is found that an unusually large range of lifetime values is obtained from the present modelling, in general accord with earlier experiments, and that the existence of large rotational barriers can markedly delay the dissociation of metastable species.  相似文献   

20.
We determine the nucleation ability of argon clusters from Monte Carlo simulations. The nucleation rate appears to be defined by a sole characteristic of the clusters, namely, the stability. The stability is calculated as the ratio of grand canonical growth and decay rates and can be assigned to individual cluster configurations. We study the connection between the stability of the cluster configurations and their volume and total potential energy. Neither the potential energy nor the volume of a cluster configuration has a clear relation to its stability, and thus to the nucleation ability. On the other hand, we show that it is possible to use a specific volume for each cluster size to calculate the work of the cluster formation. These clusters with a unique volume have the same average stability as the full set of clusters. Our simulation method allows us to study the effect of possible deviations from equilibrium in the cluster configuration distributions. We argue that the nucleation process itself can produce a source for such a deviation. We show that even a small deviation from equilibrium in the cluster configuration distribution can lead to a dramatic deceleration of the nucleation rate. Although our simulations may overestimate the magnitude of the effect, they give qualitative estimates for its importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号