首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bond distances, dissociation energies, ionization potentials and electron affinities of 4d transition metal monoxides from YO to CdO and their positive and negative ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, SVWN, MPW1PW91 and PBE1PBE. It was found that calculated properties are highly dependent on the functionals employed, especially for dissociation energy. For most neutral species, pure density functionals BLYP, BPW91 and BP86 have good performance in predicting dissociation energy than hybrid density functionals B3LYP, B3PW91 and B3P86. In addition, BLYP gives the largest bond distance compared with other density functional methods, while SVWN gives shortest bond distance, largest dissociation energy and electron affinity. For the ground state, the spin multiplicity of the charged species can be obtained by ± 1 of their corresponding neutral species.  相似文献   

2.
3.
We investigate the portability of standard norm-conserving pseudopotentials outside the density functional theory-local density approximation (DFT-LDA) framework, i.e., their use and interpretation as electron-ion effective potentials in valence-only diffusion Monte Carlo simulations. While first-principles many-body pseudopotentials are not available in the literature yet, the use of approximate pseudopotentials in quantum Monte Carlo simulations is becoming widespread. Here we attempt a systematic analysis of the portability of norm-conserving pseudopotentials generated within DFT-LDA, focusing on a model many-body system, the two-electron valence-only ion. Our results indicate that the portability is good in most cases, hence the use of pseudopotentials in quantum Monte Carlo simulations is in general a reasonable approximation but suggest that in some cases this approximation may be relevant. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
We perform release-node quantum Monte Carlo simulations on the first row diatomic molecules in order to assess how accurately their ground-state energies can be obtained. An analysis of the fermion-boson energy difference is shown to be strongly dependent on the nuclear charge, Z, which in turn determines the growth of variance of the release-node energy. It is possible to use maximum entropy analysis to extrapolate to ground-state energies only for the low Z elements. For the higher Z dimers beyond boron, the error growth is too large to allow accurate data for long enough imaginary times. Within the limit of our statistics we were able to estimate, in atomic units, the ground-state energy of Li(2) (-14.9947(1)), Be(2) (-29.3367(7)), and B(2)(-49.410(2)).  相似文献   

5.
Calculations on Rydberg states are performed using quantum Monte Carlo methods. Excitation energies and singlet-triplet splittings are calculated for two model systems, the carbon atom (3P and 1P) and carbon monoxide ((1Sigma and 3Sigma). Kohn-Sham wave functions constructed from open-shell localized Hartree-Fock orbitals are used as trial and guide functions. The fixed-node diffusion quantum Monte Carlo (FN-DMC) method depends strongly on the wave function's nodal hypersurface. Nodal artefacts are investigated for the ground state of the carbon atom. Their effect on the FN-DMC results can be analyzed quantitatively. FN-DMC leads to accurate excitation energies but to less accurate singlet-triplet splittings. Variational Monte Carlo calculations are able to reproduce the experimental results for both the excitation energies and the singlet-triplet splittings.  相似文献   

6.
We describe an efficient algorithm to compute forces in quantum Monte Carlo using adjoint algorithmic differentiation. This allows us to apply the space warp coordinate transformation in differential form, and compute all the 3M force components of a system with M atoms with a computational effort comparable with the one to obtain the total energy. Few examples illustrating the method for an electronic system containing several water molecules are presented. With the present technique, the calculation of finite-temperature thermodynamic properties of materials with quantum Monte Carlo will be feasible in the near future.  相似文献   

7.
8.
We have studied 4d transition metal monoboride, monocarbide, mononitride, monoxide, and monofluorides using density functional method at B3LYP/LanL2Dz level. The lowest spin state, relative stability, bond length, atomic charges, electron affinity, ionization potential, binding energy, and vibrational frequencies for these dimers are obtained. The cation and anion of these dimers are also studied. The properties of these dimers are compared. It was found that the ionization potentials for these dimers are much higher than the electron affinities of these dimers. The range of electron affinities is widest for 4d transition metal monocarbides and is narrow for 4d transition metal mononitrides. The range of ionization potential is widest for 4d transition metal monoxides and is narrow for 4d transition metal monocarbides. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

9.
We study three wave function optimization methods based on energy minimization in a variational Monte Carlo framework: the Newton, linear, and perturbative methods. In the Newton method, the parameter variations are calculated from the energy gradient and Hessian, using a reduced variance statistical estimator for the latter. In the linear method, the parameter variations are found by diagonalizing a nonsymmetric estimator of the Hamiltonian matrix in the space spanned by the wave function and its derivatives with respect to the parameters, making use of a strong zero-variance principle. In the less computationally expensive perturbative method, the parameter variations are calculated by approximately solving the generalized eigenvalue equation of the linear method by a nonorthogonal perturbation theory. These general methods are illustrated here by the optimization of wave functions consisting of a Jastrow factor multiplied by an expansion in configuration state functions (CSFs) for the C2 molecule, including both valence and core electrons in the calculation. The Newton and linear methods are very efficient for the optimization of the Jastrow, CSF, and orbital parameters. The perturbative method is a good alternative for the optimization of just the CSF and orbital parameters. Although the optimization is performed at the variational Monte Carlo level, we observe for the C2 molecule studied here, and for other systems we have studied, that as more parameters in the trial wave functions are optimized, the diffusion Monte Carlo total energy improves monotonically, implying that the nodal hypersurface also improves monotonically.  相似文献   

10.
We apply reptation quantum Monte Carlo to calculate one- and two-electron properties for ground-state LiH, including all tensor components for static polarizabilities and hyperpolarizabilities to fourth-order in the field. The importance sampling is performed with a large (QZ4P) STO basis set single determinant, directly obtained from commercial software, without incurring the overhead of optimizing many-parameter Jastrow-type functions of the inter-electronic and internuclear distances. We present formulas for the electrical response properties free from the finite-field approximation, which can be problematic for the purposes of stochastic estimation. The α, γ, A and C polarizability values are reasonably consistent with recent determinations reported in the literature, where they exist. A sum rule is obeyed for components of the B tensor, but B(zz,zz) as well as β(zzz) differ from what was reported in the literature.  相似文献   

11.
12.
We examine the relation between the recently proposed time-dependent quantum Monte Carlo (TDQMC) method and the principles of stochastic quantization. In both TDQMC and stochastic quantization, particle motion obeys stochastic guidance equations to preserve quantum equilibrium. In this way the probability density of the Monte Carlo particles corresponds to the modulus square of the many-body wave function at all times. However, in TDQMC, the motion of particles and guide waves occurs in physical space unlike in stochastic quantization where it occurs in configuration space. Hence, the practical calculation of time evolution of many-body fully correlated quantum systems becomes feasible within the TDQMC methodology. We illustrate the TDQMC technique by calculating the symmetric and antisymmetric ground state of a model one-dimensional helium atom, and the time evolution of the dipole moment when the atom is irradiated by a strong ultrashort laser pulse.  相似文献   

13.
The authors present scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. They demonstrate their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, they compute the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post-Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. They also show their pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for first and second rows, and n=D,T for third to fifth rows) optimized for our pseudopotentials are also presented.  相似文献   

14.
Calculations with the diffusion quantum Monte Carlo method are presented for vanadium oxide molecules VO0/+0(n) with n = 1-4 and for V2O5. Atomization and ionization energies are calculated as well as oxygen abstraction energies. The fixed-node approximation is compared for guide functions with orbitals from B3LYP and BP86 calculations and higher accuracy was obtained with the latter orbitals. Additionally, all-electron and pseudopotential calculations are compared for the oxygen atom. The overall accuracy is found to be comparable to CCSD(T) calculations where experimental data is available.  相似文献   

15.
A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreement between diffusion Monte Carlo and experiment, reducing the mean absolute deviation to 2.1 kcal/mol. Moving beyond a single determinant Slater-Jastrow trial wavefunction, diffusion Monte Carlo with a small complete active space Slater-Jastrow trial wavefunction results in near chemical accuracy. In this case, the mean absolute deviation from experimental atomization energies is 1.2 kcal/mol. It is shown from calculations on systems containing phosphorus that the accuracy can be further improved by employing a larger active space.  相似文献   

16.
In this paper, we solve quantum many-body problem by propagating ensembles of trajectories and guiding waves in physical space. We introduce the "effective potential" correction within the recently proposed time-dependent quantum Monte Carlo methodology to incorporate the nonlocal quantum correlation effects between the electrons. The associated correlation length is calculated by adaptive kernel density estimation over the walker distribution. The general formalism is developed and tested on one-dimensional helium atom in laser field of different intensities and carrier frequencies. Good agreement with exact results for the atomic ionization is obtained.  相似文献   

17.
Bond stretching mimics different levels of electron correlation and provides a challenging test bed for approximate many-body computational methods. Using the recently developed phaseless auxiliary-field quantum Monte Carlo (AF QMC) method, we examine bond stretching in the well-studied molecules BH and N(2) and in the H(50) chain. To control the sign/phase problem, the phaseless AF QMC method constrains the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. With single Slater determinants from unrestricted Hartree-Fock as trial wave function, the phaseless AF QMC method generally gives better overall accuracy and a more uniform behavior than the coupled cluster CCSD(T) method in mapping the potential-energy curve. In both BH and N(2), we also study the use of multiple-determinant trial wave functions from multiconfiguration self-consistent-field calculations. The increase in computational cost versus the gain in statistical and systematic accuracy are examined. With such trial wave functions, excellent results are obtained across the entire region between equilibrium and the dissociation limit.  相似文献   

18.
A simple method is presented which ensures the electron-nucleus cusp condition is satisfied by the Slater-Jastrow wavefunctions commonly employed in quantum Monte Carlo simulations. The method is applied in variational energy calculations of the neon atom and a selection of molecules using both Gaussian and Slater basis sets. In addition, we discuss the relationship between the electron-nucleus cusps and the variance of forces, and investigate the sensitivity of forces to the quality of the cusps for various diatomic molecules.  相似文献   

19.
Quantum mechanics for many-body systems may be reduced to the evaluation of integrals in 3N dimensions using Monte Carlo, providing the Quantum Monte Carlo ab initio methods. Here we limit ourselves to expectation values for trial wave functions, that is to variational quantum Monte Carlo. Almost all previous implementations employ samples distributed as the physical probability density of the trial wave function, and assume the central limit theorem to be valid. In this paper we provide an analysis of random error in estimation and optimization that leads naturally to new sampling strategies with improved computational and statistical properties. A rigorous lower limit to the random error is derived, and an efficient sampling strategy presented that significantly increases computational efficiency. In addition the infinite variance heavy tailed random errors of optimum parameters in conventional methods are replaced with a Normal random error, strengthening the theoretical basis of optimization. The method is applied to a number of first row systems and compared with previously published results.  相似文献   

20.
We are proposing a lattice model with chemical input for the computer modelling of the polymer glass transition. The chemical input information is obtained by a coarse graining procedure applied to a microscopic model with full chemical detail. We use this information on Bisphenol-A-Polycarbonate to predict it's Vogel-Fulcher temperature out of a dynamic Monte Carlo Simulation. The microscopic structure of the lattice model is that of a genuine amorphous material, and the structural relaxation obeys the time temperature superposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号