首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The formation of adducts of tris(pentafluorophenyl)borane with strongly coordinating anions such as CN(-) and [M(CN)(4)](2)(-) (M = Ni, Pd) is a synthetically facile route to the bulky, very weakly coordinating anions [CN[B(C(6)F(5))(3)](2)](-) and [M[CNB(C(6)F(5))(3)](4)](2-) which are isolated as stable NHMe(2)Ph(+) and CPh(3)(+) salts. The crystal structures of [CPh(3)][CN[B(C(6)F(5))(3)](2)] (1), [CPh(3)][ClB(C(6)F(5))(3)] (2), [NHMe(2)Ph](2)[Ni[CNB(C(6)F(5))(3)](4)].2Me(2)CO (4b.2Me(2)CO), [CPh(3)](2)[Ni[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (4c.2CH(2)Cl(2)), and [CPh(3)](2)[Pd[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (5c.2CH(2)Cl(2)) are reported. The CN stretching frequencies in 4 and 5 are shifted by approximately 110 cm(-1) to higher wavenumbers compared to the parent tetracyano complexes in aqueous solution, although the M-C and C-N distances show no significant change on B(C(6)F(5))(3) coordination. Zirconocene dimethyl complexes L(2)ZrMe(2) [L(2) = Cp(2), SBI = rac-Me(2)Si(Ind)(2)] react with 1, 4c or 5c in benzene solution at 20 degrees C to give the salts of binuclear methyl-bridged cations, [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] and [(L(2)ZrMe)(2)(mu-Me)](2)[M[CNB(C(6)F(5))(3)](4)]. The reactivity of these species in solution was studied in comparison with the known [[(SBI)ZrMe](2)(mu-Me)][B(C(6)F(5))(4)]. While the latter reacts with excess [CPh(3)][B(C(6)F(5))(4)] in benzene to give the mononuclear ion pair [(SBI)ZrMe(+).B(C(6)F(5))(4)(-)] in a pseudo-first-order reaction, k = 3 x 10(-4) s(-1), [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] reacts to give a mixture of L(2)ZrMe(mu-Me)B(C(6)F(5))(3) and L(2)ZrMe(mu-NC)B(C(6)F(5))(3). Recrystallization of [Cp' '(2)Zr(mu-Me)(2)AlMe(2)][CN[B(C(6)F(5))(3)](2)] affords Cp' '(2)ZrMe(mu-NC)B(C(6)F(5))(3) 6, the X-ray structure of which is reported. The stability of [(L(2)ZrMe)(2)(mu-Me)](+)X(-) decreases in the order X = [B(C(6)F(5))(4)] > [M[CNB(C(6)F(5))(3)](4)] > [CN[B(C(6)F(5))(3)](2)] and increases strongly with the steric bulk of L(2) = Cp(2) < SBI. Activation of (SBI)ZrMe(2) by 1 in the presence of AlBu(i)(3) gives extremely active ethene polymerization catalysts. Polymerization studies at 1-7 bar monomer pressure suggest that these, and by implication most other highly active ethene polymerization catalysts, are strongly mass-transport limited. By contrast, monitoring propene polymerization activities with the systems (SBI)ZrMe(2)/1/AlBu(i)(3) and CGCTiMe(2)/1/AlBu(i)(3) at 20 degrees C as a function of catalyst concentration demonstrates that in these cases mass-transport limitation is absent up to [metal] approximately 2 x 10(-5) mol L(-1). Propene polymerization activities decrease in the order [CN[B(C(6)F(5))(3)](2)](-) > [B(C(6)F(5))(4)](-) > [M[CNB(C(6)F(5))(3)](4)](2-) > [MeB(C(6)F(5))(3)](-), with differences in activation barriers relative to [CN[B(C(6)F(5))(3)](2)](-) of DeltaDeltaG = 1.1 (B(C(6)F(5))(4)(-)), 4.1 (Ni[CNB(C(6)F(5))(3)](4)(2-)) and 10.7-12.8 kJ mol(-)(1) (MeB(C(6)F(5))(3)(-)). The data suggest that even in the case of very bulky anions with delocalized negative charge the displacement of the anion by the monomer must be involved in the rate-limiting step.  相似文献   

2.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

3.
A series of copper(II) complexes with substituted phenanthroline ligands has been synthesized and characterized electronically and structurally. The compounds that have been prepared include the monosubstituted ligand complexes of the general formula [Cu(5-R-phen)(2)(CH(3)CN)](BF(4))(2), where R = NO(2), Cl, H, or Me, and the disubstituted ligand complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2). The complexes [Cu(5-NO(2)-phen)(2)(CH(3)CN](BF(4))(2) (1), [Cu(5-Cl-phen)(2)(CH(3)CN)](BF(4))(2) (2), [Cu(o-phen)(2)(CH(3)CN)](BF(4))(2) (3), and [Cu(5-Me-phen)(2)(CH(3)CN)](BF(4))(2) (4) each crystallize in the space group C2/c with compounds 1, 2, and 4 comprising an isomorphous set. The disubstituted complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2) (5) crystallizes in the space group P2(1)/c. Each structure is characterized by a distorted trigonal bipyramidal arrangement of ligands around the central copper atom with approximate or exact C(2) symmetry. The progression from electron-withdrawing to electron-donating substituents on the phenanthroline ligands correlates with less accessible reduction potentials for the bis-chelate complexes.  相似文献   

4.
Reaction of U(NEt(2))(4) with HS-2,4,6-(t)Bu(3)C(6)H(2) (HSMes) gave U(SMes)(3)(NEt(2))(py) (1), whereas similar treatment of U[N(SiMe(3))SiMe(2)CH(2)][N(SiMe(3))(2)](2) afforded U(SMes)[N(SiMe(3))(2)](3) (2) and U(SMes)(3)[N(SiMe(3))(2)]. The first neutral homoleptic uranium(IV) thiolate to have been crystallographically characterized, U(SMes)(4) (4), was isolated from the reaction of U(BH(4))(4) and KSMes. The first homoleptic thiolate complex of uranium(III), U(SMes)(3) (5), was synthesized by protonolysis of U[N(SiMe(3))(2)](3) with HSMes in cyclohexane. The crystal structure of 5 exhibits the novel eta(3) ligation mode for the arylthiolate ligand. Comparison of the crystal structure of 5 with those of the isomorphous lanthanide congeners Ln(SMes)(3) (Ln = La, Ce, Pr, and Nd) indicates that the U-S, U-C(ipso)(), and U-C(ortho)() bond lengths are shorter than the corresponding ones in the 4f-element analogues, when taking into account the variation in the ionic radii of the metals. The distance between the uranium and the carbon atoms involved in the U...H-C epsilon agostic interaction of each thiolate ligand is shorter, by approximately 0.05 A, than that expected from a purely ionic bonding model. The lanthanide(III)/actinide(III) differentiation was analyzed by density functional theory (DFT). The nature of the M-S bond is shown to be ionic strongly polarized at the sulfur for M = U and iono-covalent (i.e. strongly ionic with low orbital interaction), for M = Ln. The strength of the U...H-C epsilon agostic interaction is proposed to be controlled by the maximization of the interaction between U(+) and S(-) under steric constraints. The eta(3) ligation mode of the arylthiolate ligand is also obtained from DFT.  相似文献   

5.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

6.
The transmetallation of the palladacyclopentadiene complex Pd{C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy) with the dicationic Pd(II) complex [Pd(bipy)(CH(3)CN)(2)][BF(4)](2) afforded a terminally σ-palladated diene complex [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy)(2)(CH(3)CN)(2)][BF(4)](2). It was revealed by X-ray crystallographic analysis that replacement of the acetonitrile ligands in a terminally σ-palladated diene complex with PPh(3) ligands resulted in the conformation change of the σ-palladated diene moiety from skewed s-cis to planar s-trans. Treatment of a bis-triphenylphosphine dipalladium complex [Pd(2)(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2) with dimethoxyacetylene dicarboxylate (DMAD) (1 equiv.) in acetonitrile resulted in the insertion of DMAD to the Pd-Pd bond to afford [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)}(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2). Addition of the second DMAD gave the ylide-type complex [Pd(2){μ-η(2):η(3)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)(PPh(3))}(PPh(3))(2)(CH(3)CN)(3)][PF(6)](2) of which the structure was determined by X-ray crystallographic analysis.  相似文献   

7.
Zheng XD  Jiang L  Feng XL  Lu TB 《Inorganic chemistry》2008,47(23):10858-10865
The reactions of racemic and enantiopure macrocyclic compounds [Ni(alpha-rac-L)](ClO(4))(2) (containing equal amounts of SS and RR enantiomers), [Ni(alpha-SS-L)](ClO(4))(2), and [Ni(alpha-RR-L)](ClO(4))(2) with K[Ag(CN)(2)] in acetonitrile/water afford three 1D helical chains of {[Ni(f-rac-L)][Ag(CN)(2)](2)}(n) (1), {[Ni(f-SS-L)](2)[Ag(CN)(2)](4)}(n) (Delta-2), and {[Ni(f-RR-L)](2)[Ag(CN)(2)](4)}(n) (Lambda-2); one dimer of [Ni(f-rac-L)][Ag(CN)(2)](2) (3); and one trimer of [Ni(f-rac-L)Ag(CN)(2)](3).(ClO(4))(3) (4) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Compounds 1, Delta-2, Lambda-2, and 3, which are supramolecular isomers, are constructed via argentophilic interactions. In 1, [Ni(f-RR-L)][Ag(CN)(2)](2) enantiomers alternately connect with [Ni(f-SS-L)][Ag(CN)(2)](2) enantiomers through intermolecular argentophilic interactions to form a 1D meso-helical chain, and the 1D chains are further connected through the interchain hydrogen bonds to generate a 2D network. When chiral [Ni(alpha-SS-L)](ClO(4))(2) and [Ni(alpha-RR-L)](ClO(4))(2) were used as building blocks, two supramolecular stereoisomers of Delta-2 and Lambda-2 were obtained, which show the motif of homochiral right-handed and left-handed helical chains, respectively, and the 1D homochiral helical chains are linked by the interchain hydrogen bonds to form a 3D structure. In 3, a pair of enantiomers of [Ni(f-RR-L)][Ag(CN)(2)](2) and [Ni(f-SS-L)][Ag(CN)(2)](2) connect with each other through intermolecular argentophilic interactions to form a dimer. The reaction of [Ni(alpha-rac-L)](ClO(4))(2) with K[Ag(CN)(2)] in acetonitrile gives a trimer of 4; each trimer is chiral with unsymmetrical RR, RR, and SS, or RR, SS, and SS configurations. The homochiral nature of Delta-2 and Lambda-2 was confirmed by the results of solid circular dichroism spectra measurements. The solid samples of 1-4 show strong fluorescent emissions at room temperature.  相似文献   

8.
[Ag(UO(2))(3) (OAc)(9)][Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)] (, OAc = CH(3)COO(-)) crystallized from an ethanol solution and its structure was determined by IR spectroscopy, elemental analysis, (1)H NMR, (13)C NMR and X-ray crystallography; it is composed of [Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)](2+) cations and [Ag(UO(2))(3)(OAc)(9)](2-) anions in which triuranyl [(UO(2))(OAc)(3)](3) clusters are linked by the Ag ion.  相似文献   

9.
Air-stable rhenium(V) oxo complexes are formed when [ReOCl(3)(PPh(3))(2)] is treated with N-heterocyclic carbenes of the 1,3-dialkyl-4,5-dimethylimidazol-2-ylidene type, L(R) (R = Me, Et, i-Pr). Complexes of the compositions [ReO(2)(L(R))(4)](+), [ReOCl(L(R))(4)](2+), or [ReO(OMe)(L(R))(4)](2+) can be isolated depending on the alkyl substituents at the nitrogen atoms of the ligands and the reaction conditions applied. Despite the steric overcrowding of the equatorial coordination spheres of the metal atoms by each of the four carbene ligands, stable complexes with six-coordinate rhenium atoms are obtained. Steric demands of the alkyl groups allow control of the stability of the mono-oxo intermediates. Air-stable cationic complexes of the compositions [ReOCl(L(Me))(4)](2+), [ReOCl(L(Et))(4)](2+), and [ReO(OMe)(L(Me))(4)](2+) have been isolated, whereas reactions of [ReOCl(3)(PPh(3))(2)] or other rhenium(V) precursors with the more bulky 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (L(i)(-)(Pr)) directly yield the dioxo complex [ReO(2)(L(i)(-)(Pr))(4)](+). X-ray structures of [ReO(2)(L(i)(-)(Pr))(4)][ReO(4)], [ReO(2)(L(i)(-)(Pr))(4)][PF(6)], [ReO(2)(L(Me))(4)][ReO(4)](0.45)[PF(6)](0.55), [ReO(MeOH)(L(Me))(4)][PF(6)](2), and [ReOCl(L(Et))(4)][PF(6)](2) show that the equatorial coordination spheres of the rhenium atoms are essentially planar irrespective of the steric demands of the individual carbene ligands.  相似文献   

10.
The salts [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2), [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)], [Pt(en)(2)][Au(CN)(2)](2), [Pt(en)(2)][Ag(CN)(2)](2), and [Pt(bipy)(2)][Au(CN)(2)](2) have been prepared by mixing solutions of salts containing the appropriate cation with solutions of K[Au(CN)(2)] or K[Ag(CN)(2)]. Because the platinum atom in the cation is sterically protected, the structures of [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2) and [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)] reveal no close metal-metal interactions. Colorless crystals of [Pt(en)(2)][Au(CN)(2)](2) and [Pt(en)(2)][Ag(CN)(2)](2) are isostructural and involve extended chains of alternating cations and anions that run parallel to the crystallographic a axis, along with isolated anions. In the chains, the metal-metal separations are relatively short: Pt...Au, 3.1799(3) Angstroms; Pt...Ag, 3.1949(2) Angstroms. In [Pt(bipy)(2)][Au(CN)(2)](2), each cation has axial interactions with the anions through close Pt...Au contacts [3.1735(6) Angstroms]. In addition, the anions are weakly linked through Au...Au contacts of 3.5978(9) Angstroms. Unlike the previously reported Pt/Au complex [Pt(NH(3))(4)][Au(CN)(2)](2).1.5H(2)O, which is luminescent, none of the salts reported here luminesce.  相似文献   

11.
Compounds of the new tetrafluorophthalimido anion, [C(6)F(4)(CO)(2)N](-), are readily accessible by treatment of tetrafluorophthalimide with either LiNPr(i)(2) or mixtures of NEt(3) and Me(3)ECl (E = Si or Sn), to give C(6)F(4)(CO)(2)N-X (X = Li 3, SiMe(3)4, and SnMe(3)5). The reaction of the trimethylsilyl derivative 4 with AgF leads cleanly to the ion pair complex [Ag(NCMe)(2)][Ag(N(CO)(2)C(6)F(4))(2)] (6·2MeCN), which contains a linear [Ag{N(CO)(2)C(6)F(4)}(2)](-) anion and a tetracoordinate Ag(+) cation. Compound 6 reacts with iodine to give the N-iodo compound C(6)F(4)(CO)(2)NI 7, which crystallises as an acetonitrile adduct. Treatment of 6 with LAuCl affords LAu{N(CO)(2)C(6)F(4)} (L = Ph(3)P 8a, Cy(3)P 8b, or THT 9), whereas the reaction with AuCl in acetonitrile affords the heterobinuclear compound [Ag(MeCN)(2)][Au{N(CO)(2)C(6)F(4)}(2)]·MeCN (10·3MeCN). The tetrafluorophthalimido ligand is not readily displaced by donor ligands; however, the addition of B(C(6)F(5))(3)(Et(2)O) to a diethyl ether solution of 8a leads to the salt [Au(PPh(3))(2)][N{COB(C(6)F(5))(3)}(2)C(6)F(4))] 11. The analogous reaction of (THT)Au{N(CO)(2)C(6)F(4)} with B(C(6)F(5))(3) in toluene in the presence of excess norbornene (nb) gives [Au(nb)(3)][N{COB(C(6)F(5))(3)}(2)C(6)F(4))] 12. Compounds 11 and 12 contain a new non-coordinating phthalimido-bridged diborate anion with O-bonded boron atoms. The crystal structures of compounds 2-11 are reported.  相似文献   

12.
The nature of the reactivity of the "yl" oxygens has been a subject of constant interest for a long time in uranyl chemistry. Thus, the electron-donor ability of the equatorial ligands plays an important role in the nature of the uranyl U=O bond. In this paper, a combination of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and both ground-state and time-dependent density functional theory (DFT) calculations have been used to examine the effect of equatorial plane ligation on the U=O bonding in two uranyl complexes: [UO(2)(py)(3)I(2)] and [UO(2)(CN)(5)][NEt(4)](3). By coupling experimental data and theory, spectral features observed in the oxygen K-edge NEXAFS spectra have been assigned. Despite the inert character of the U=O bond, we observe that the electron-donating or withdrawing character of the equatorial ligands has a measurable effect on features in the NEXAFS spectra of these species and thereby on the unoccupied molecular orbitals of {UO(2)}(2+).  相似文献   

13.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

14.
The neutral, five-coordinate platinum nitrosyl compounds [Pt(C(6)F(5))(3)(L)(NO)] (2) [L=CNtBu (2 a), NC(5)H(4)Me-4 (2 b), PPhMe(2) (2 c), PPh(3) (2 d) and tht (2 e)] have been prepared by the reaction of [NBu(4)][Pt(C(6)F(5))(3)(L)] (1) with NOClO(4) in CH(2)Cl(2). The ionic compound [N(PPh(3))(2)][Pt(C(6)F(5))(4)(NO)] (4) has been prepared in a similar way starting from the homoleptic species [N(PPh(3))(2)](2)[Pt(C(6)F(5))(4)] (3). Compounds 2 and 4 are all diamagnetic with [PtNO](8) electronic configuration and show nu(NO) stretching frequencies at around 1800 cm(-1). The crystal and molecular structures of 2 c and 4 have been established by X-ray diffraction methods. The coordination environment for the Pt center in both compounds can be described as square pyramidal (SPY-5). Bent nitrosyl coordination is observed in both cases with Pt-N-O angles of 120.1(6) and 130.2(7) degrees for 2 c and 4, respectively. The bonding mechanism of the nitrosyl ligand coordinated to various model [Pt(II)R(4)](2-) (R=H, Me, Cl, CN, C(6)F(5) or C(6)Cl(5)) and [Pt(C(6)F(5))(3)(L)](-) (L=CNMe, PH(3)) systems has been studied by density functional calculations at the B3LYP level of theory, using the SDD basis set. The R(4)Pt-NO and (C(6)F(5))(3)(L)Pt-NO interactions generally involve two components: i) a direct Pt-NO bonding interaction and ii) multicenter-bonding interactions between the N atom of the NO ligand and the donor atoms of the R and L ligands. Moreover, with the more complex R groups, C(6)F(5) or C(6)Cl(5), a third component has been found to arise, which involves multicenter electrostatic interactions between the positively charged NO ligand and the negatively charged halo-substituents in the ortho-position of the C(6)X(5) groups (X=F, Cl). The contribution of each component to the Pt-NO bonding in R(4)Pt-NO and (C(6)F(5))(3)(L)Pt-NO compounds seems to be modulated by the electronic and steric effects of the R and L ligands.  相似文献   

15.
Several tellurometalates of the general formula [MTe(7)](n)()(-) (n = 2, 3) have been isolated as salts of organic cations by reaction of suitable metal sources with polytelluride solutions in DMF. The [HgTe(7)](2)(-) anion has the same structure in both the NEt(4)(+) and the PPh(4)(+) salts except for a minor change in the ligand conformation. The [AgTe(7)](3)(-) and [HgTe(7)](2)(-) anions contain metal atoms coordinated in trigonal-planar fashion to eta(3)-Te(7)(4)(-) ligands. The central Te atom of an eta(3)-Te(7)(4)(-) ligand is coordinated to the metal atom and to two Te atoms in a "T"-shaped geometry consistent with a hypervalent 10 e(-) center. The planar [AuTe(7)](3)(-) anion may best be described as possessing a square-planar Au(III) atom coordinated to an eta(3)-Te(5)(4)(-) ligand and to an eta(1)-Te(2)(2)(-) ligand. The reaction of [NEt(4)](n)()[MTe(7)] (M = Hg, n = 2; M = Au, n = 3) with the activated acetylene dimethyl acetylenedicarboxylate (DMAD) has yielded the products [NEt(4)](n)()[M(Te(2)C(2)(COOCH(3))(2))(2)] (M = Hg, n = 2; M = Au, n = 1). The metal atoms are coordinated to two Te(COOCH(3))C=C(COOCH(3))Te(2)(-) ligands, for M = Hg in a distorted tetrahedral fashion and for M = Au in a square-planar fashion.  相似文献   

16.
The new [N(CH(3))(4)][WSF(5)] salt was synthesized by two preparative methods: (a) by reaction of WSF(4) with [N(CH(3))(4)][F] in CH(3)CN and (b) directly from WF(6) using the new sulfide-transfer reagent [N(CH(3))(4)][SSi(CH(3))(3)]. The [N(CH(3))(4)][WSF(5)] salt was characterized by Raman, IR, and (19)F NMR spectroscopy and [N(CH(3))(4)][WSF(5)]·CH(3)CN by X-ray crystallography. The reaction of WSF(4) with half an aliquot of [N(CH(3))(4)][F] yielded [N(CH(3))(4)][W(2)S(2)F(9)], which was characterized by Raman and (19)F NMR spectroscopy and by X-ray crystallography. The WSF(5)(-) and W(2)S(2)F(9)(-) anions were studied by density functional theory calculations. The novel [W(2)OSF(9)](-) anion was observed by (19)F NMR spectroscopy in a CH(3)CN solution of WOF(4) and WSF(5)(-), as well as CH(3)CN solutions of WSF(4) and WOF(5)(-).  相似文献   

17.
1,2,4,5-Tetrakis(phenyselenomethyl)benzene (L) has been synthesized by reaction of in situ generated PhSe(-) with 1,2,4,5-tetrakis(bromomethyl)benzene in N(2) atmosphere. Its first bimetallic complexes and a bis-pincer complex having compositions [(η(3)-C(3)H(5))(2)Pd(2)(L)][ClO(4)](2) (1) [Pd(2)(C(5)H(5)N)(2)(L)][BF(4)](2) (2) and [(η(6)-C(6)H(6))(2)Ru(2)(L)Cl(2)][PF(6)](2) (3) have been synthesized by reacting L with [Pd(η(3)-C(3)H(5))Cl](2), [Pd(CH(3)CN)(4)][BF(4)](2) and [(η(6)-C(6)H(6))(2)RuCl(2)](2) respectively. The structures of ligand L and its all three complexes have been determined by X-ray crystallography. In 1 and 3, ligand L forms with two organometallic species seven membered chelate rings whereas in 2 it ligates in a bis-pincer coordination mode. The geometry around Pd in 1 or 2 is close to square planar whereas in 3, Ru has pseudo-octahedral half sandwich "Piano-Stool" geometry. The Pd-Se bond distances are in the ranges 2.4004(9)-2.4627(14) ? and follow the order 1 > 2, whereas Ru-Se bond lengths are between 2.4945(16) and 2.5157(17) ?. The 1 and 2 have been found efficient catalysts for Heck reaction of aryl halides with styrene and methyl acrylate. The 2 is superior to 1. The TON and TOF values (per Pd) are up to ~47500 and ~2639 h(-1) respectively.  相似文献   

18.
In contrast to the neutral macrocycle [UN*(2)(N,C)] (1) [N* = N(SiMe(3))(3); N,C = CH(2)SiMe(2)N(SiMe(3))] which was quite inert toward I(2), the anionic bismetallacycle [NaUN*(N,C)(2)] (2) was readily transformed into the enlarged monometallacycle [UN*(N,N)I] (4) [N,N = (Me(3)Si)NSiMe(2)CH(2)CH(2)SiMe(2)N(SiMe(3))] resulting from C-C coupling of the two CH(2) groups, and [NaUN*(N,O)(2)] (3) [N,O = OC(═CH(2))SiMe(2)N(SiMe(3))], which is devoid of any U-C bond, was oxidized into the U(V) bismetallacycle [Na{UN*(N,O)(2)}(2)(μ-I)] (5). Sodium amalgam reduction of 4 gave the U(III) compound [UN*(N,N)] (6). Addition of MN(3) or MCN to the (N,C), (N,N), and (N,O) metallacycles 1, 4, and 5 led to the formation of the anionic azide or cyanide derivatives M[UN*(2)(N,C)(N(3))] [M = Na, 7a or Na(15-crown-5), 7b], M[UN*(2)(N,C)(CN)] [M = NEt(4), 8a or Na(15-crown-5), 8b or K(18-crown-6), 8c], M[UN*(N,N)(N(3))(2)] [M = Na, 9a or Na(THF)(4), 9b], [NEt(4)][UN*(N,N)(CN)(2)] (10), M[UN*(N,O)(2)(N(3))] [M = Na, 11a or Na(15-crown-5), 11b], M[UN*(N,O)(2)(CN)] [M = NEt(4), 12a or Na(15-crown-5), 12b]. In the presence of excess iodine in THF, the cyanide 12a was converted back into the iodide 5, while the azide 11a was transformed into the neutral U(V) complex [U(N{SiMe(3)}SiMe(2)C{CHI}O)(2)I(THF)] (13). The X-ray crystal structures of 4, 7b, 8a-c, 9b, 10, 12b, and 13 were determined.  相似文献   

19.
Treatment of [UO(2)Cl(2)(thf)(3)] in thf with 2 equiv of Na[PhC(NSiMe(3))(2)] (Na[NCN]) or Na[Ph(2)P(NSiMe(3))(2)] (Na[NPN]) gives uranyl complex [UO(2)(NCN)(2)(thf)] (1) or [UO(2)(NPN)(2)] (3), respectively. Each complex is a rare example of out-of-plane equatorial nitrogen ligand coordination; the latter contains a significantly bent O=U=O unit and represents the first example of a uranyl ion within a quadrilateral-faced monocapped trigonal prismatic geometry. Removal of the thf in 1 gives [UO(2)(NCN)(2)] (2) with in-plane N donor ligands. Addition of 3 equiv of Na[NCN] gives the tris complex [Na(thf)(2)PhCN][[UO(2)(NCN)(3)] (4.PhCN) with elongation and weakening of one U=O bond through coordination to Na(+). Hydrolysis of 4 provides the oxo-bridged dimer [Na(thf)UO(2)(NCN)(2)](2)(micro(2)-O) (6), a complex with the lowest reported O=U=O symmetrical stretching frequency (nu(1) = 757 cm(-)(1)) for a dinuclear uranyl complex. The anion in complex 4 is unstable in solution but can be stabilized by the introduction of 18-crown-6 to give [Na(18-crown-6)][UO(2)(NCN)(3)] (5). The structures of 1-4 and 6 have been determined by crystallography, and all except 2 show significant deviations of the N ligand atoms from the equatorial plane, driven by the steric bulk of the NCN and NPN ligands. Despite the unusual geometries, these distortions in structure do not appear to have any direct effect on the bonding and electronic structure of the uranyl ion. The main influences toward lowering the U=O bond stretching frequency (nu(1)) are the donating ability of the equatorial ligands, overall charge of the complex, and U=O.Na-type interactions. The intense orange/red colors of these compounds are because of low-energy ligand-to-metal charge-transfer electronic transitions.  相似文献   

20.
The treatment of the dimeric paddle-wheel (PW) compound [Mo(2)(NCCH(3))(10)][BF(4)](4)1 with oxalic acid (0.5 equiv.), 1,1-cyclobutanedicarboxylic acid (1 equiv.), 5-hydroxyisophthalic acid (1 equiv.) (m-bdc-OH) or 2,3,5,6-tetrafluoroterephthalic acid (0.5 or 1 equiv.) leads to the formation of macromolecular dicarboxylate-linked (Mo(2))(n) entities (n = 2, 3, 4). The structure of the compounds depends on the length and geometry of the organic linkers. In the case of oxalic acid, the dimeric compound [(CH(3)CN)(8)Mo(2)(OOC-COO)Mo(2)(NCCH(3))(8)][BF(4)](6)2 is formed selectively, whereas the use of 2,3,5,6-tetrafluoroterephthalic acid affords the square-shaped complex [(CH(3)CN)(6)Mo(2)(OOC-C(6)F(4)-COO)](4)[BF(4)](8)3. Bent linkers with a bridging angle of 109° and 120°, respectively, lead to the formation of the molecular loop [(CH(3)CN)(6)Mo(2)(OOC-C(4)H(6)-COO)](2)[BF(4)](4)4 and the bowl-shaped molecular triangle [(CH(3)CN)(6)Mo(2)(m-bdc-OH)](3)[BF(4)](6)5. All complexes are characterised by X-ray single crystal diffraction, NMR ((1)H, (11)B, (13)C and (19)F) and UV-Vis spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号