首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the mechanism of CO oxidation on O-precovered Pd(111) surfaces by means of fast x-ray photoelectron spectroscopy (XPS). The oxygen overlayer is compressed upon CO coadsorption from a p(2 x 2) structure into a (square root(3) x square root(3))R30 degrees structure and then into a p(2 x 1) structure with increasing CO coverage. These three O phases exhibit distinctly different reactivities. (1) The p(2 x 2) phase does not react with CO unless the surface temperature is sufficiently high (<290 K). (2) In the square root(3) x square root(3))R30 degrees phase, the reaction occurs exclusively at island peripheries. CO molecules in a high-density phase formed under CO exposure react with oxygen atoms, leading to quite a small apparent activation energy. (3) The reaction proceeds uniformly over the islands in the p(2 x 1) phase.  相似文献   

2.
Initial surface oxidation and nanoscale morphology on Cu{100}, Cu(Ag) and Ag/Cu{100} have been investigated in situ by X‐ray photoelectron spectroscopy (XPS), X‐ray induced Auger electron spectroscopy (XAES) and the inelastic electron background analysis as a function of oxygen exposure at 3.7 × 10?2 and 213 mbar pressures at a surface temperature of 373 K. Relative Cu2O concentrations have been quantified by analysis of the peak shape of the XAES Cu LMM transition. The surface morphology of Cu2O islands and the Ag layer has been characterized by inelastic electron background analysis of XAES O KLL and Ag 3d transitions. Oxygen‐induced segregation of Cu, as well as the subsequent Cu2O island formation on Cu(Ag) and Ag/Cu{100} surfaces, has been investigated quantitatively. Our results indicate that Ag has a clear inhibitive effect on the initial oxidation and Cu2O island formation on Cu(Ag) and Ag/Cu{100} surfaces. The Cu2O islands are also observed to remain highly strained on Ag/Cu{100} even at higher O2 exposures. The results suggest that strained Cu2O islands eventually penetrate through the buried Ag layer, and in conjunction with segregating Cu atoms enable the oxidation to proceed at a similar rate to or even faster than on the unalloyed Cu surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
On the Ag(111)-p(4x4)-O surface SO2(g) reacts with oxygen according to SO2(g)+O(a)-->SO3(a). Sulfite forms in a (2 radical3x2 radical3)R30 degrees structure. The restructuring of the surface atoms during sulfite formation is indicative of the deconstruction of the p(4x4)-O structure. Heating the sulfite-covered surface to 700 K affects the disproportionation of SO3 to SO4 in a (4 square root of 3 x square root of 3)R30 degrees structure accompanied by the desorption of SO2(g) and smoothing of the surface. Continued heating beyond 700 K affects the complete decomposition of sulfate to SO2(g) and O2(g).  相似文献   

4.
We have demonstrated a simple fabrication of hollow nanoparticles by halide-induced corrosion oxidation with the aid of surfactants. Cuprous oxide Cu2O nanoshells can be generated by simply mixing Cu nanoparticles with alkyltrimethylammonium halides at 55 degrees C for 16 min. The hollowing mechanism proposed is that absorption of surfactants onto the Cu surface facilitates the formation of the void interior through an oxidative etching process. Upon extending the reaction up to 4 h, fragmentation, oxidation, and self-assembly were observed and the CuO ellipsoidal structures were formed. The headgroup lengths of the surfactants influenced the degree of CuO ellipsoidal formation, whereby longer surfactants favored the generation of ellipsoids. Optical absorption measured by UV-visible spectroscopy was used to monitor both oxidation courses of Cu-->Cu2O and Cu2O-->CuO and to determine the band-gap energies as 2.4 eV for Cu2O nanoshells and 1.89 eV for CuO ellipsoids. For the contact-angle measurements, the wettability changed from hydrophilicity (18 degrees) to hydrophobicity (140 degrees) as the Cu2O nanoshells shifted to CuO ellipsoids.  相似文献   

5.
Exposing water to a (2 x 2)-O precovered Pt(111) surface at 100 K and subsequently annealing at 155 K led to the formation of a well-ordered (square root 3 x square root 3)R30 degrees overlayer. The structure of this overlayer is determined by DFT and full dynamical LEED calculations. There are two O containing groups per (square root 3 x square root 3)R30 degrees unit cell and both occupy near on-top positions with a Pt-O bond length of (2.11 +/- 0.04) A. DFT calculations determined the hydrogen positions of the OH species and clearly indicate hydrogen bonds between the neighboring adsorbed OH groups whose interaction is mainly of electrostatic nature. A theoretical comparison with H(2)O shows the hybridization of OH on Pt(111) to be sp(3).  相似文献   

6.
Oxidized copper surfaces have attracted significant attention in recent years due to their unique catalytic properties, including their enhanced hydrocarbon selectivity during the electrochemical reduction of CO2. Although oxygen plasma has been used to create highly active copper oxide electrodes for CO2RR, how such treatment alters the copper surface is still poorly understood. Here, we study the oxidation of Cu(100) and Cu(111) surfaces by sequential exposure to a low-pressure oxygen plasma at room temperature. We used scanning tunnelling microscopy (STM), low energy electron microscopy (LEEM), X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and low energy electron diffraction (LEED) for the comprehensive characterization of the resulting oxide films. O2-plasma exposure initially induces the growth of 3-dimensional oxide islands surrounded by an O-covered Cu surface. With ongoing plasma exposure, the islands coalesce and form a closed oxide film. Utilizing spectroscopy, we traced the evolution of metallic Cu, Cu2O and CuO species upon oxygen plasma exposure and found a dependence of the surface structure and chemical state on the substrate''s orientation. On Cu(100) the oxide islands grow with a lower rate than on the (111) surface. Furthermore, while on Cu(100) only Cu2O is formed during the initial growth phase, both Cu2O and CuO species are simultaneously generated on Cu(111). Finally, prolonged oxygen plasma exposure results in a sandwiched film structure with CuO at the surface and Cu2O at the interface to the metallic support. A stable CuO(111) surface orientation is identified in both cases, aligned to the Cu(111) support, but with two coexisting rotational domains on Cu(100). These findings illustrate the possibility of tailoring the oxidation state, structure and morphology of metallic surfaces for a wide range of applications through oxygen plasma treatments.

A low-pressure oxygen plasma oxidized Cu(100) and Cu(111) surfaces at room temperature. The time-dependent evolution of surface structure and chemical composition is reported in detail for a range of exposure times up to 30 min.  相似文献   

7.
The atom specific electronic structure of (2 square root of 3 x 2 square root of 3)R30 degrees CO on hcp Ru(0001) has been determined with resonantly excited x-ray emission spectroscopy. We find that the general features of the local adsorbate electronic structure are similar to the situation of CO adsorbed on the fcc metals Ni(100) and Cu(100). The interpretation of the surface chemical bond of (2 square root of 3 x 2 square root of 3)R30 degrees CO/Ru(0001) based on the direct application of the local, allylic model from on-top adsorption on the fcc(100) surfaces Ni(100) and Cu(100) explains many aspects of the surface chemical bond. However, also nonlocal contributions like adsorbate-adsorbate interaction and the deviation from upright on-top adsorption on the Ru(0001) surface influence observables like the heat of adsorption and the Me-CO bond strength.  相似文献   

8.
The chemisorption of methyl and phenyl iodide has been studied at Cu(110) and Ag(111) surfaces at 290 K with STM and XPS. At both surfaces dissociative adsorption of both molecules leads to chemisorbed iodine, with the STM showing c(2 x 2) and (square root 3 x square root 3)R30 structures at the Cu(110) and Ag(111) surfaces, respectively. At the Cu(110) surface a comparison of coexisting c(2 x 2) I(a) and p(2 x 1) O(a) domains shows the iodine adatoms to be chemisorbed in hollow sites with evidence at low coverage for diffusion in the (110) direction. In the case of methyl iodide no carbon adsorption is observed at either the silver or the copper surfaces, but chemisorbed phenyl groups are imaged at the Cu(110) surface after exposure to phenyl iodide. The STM images show the phenyl groups as bright features approximately 0.7 nm in diameter and 0.11 nm above the iodine adlayer, reaching a maximum surface concentration after approximately 6 Langmuir exposure. However, the phenyl coverage decreases with subsequent exposures to PhI and is negligible by approximately 1000 L exposure, consistent with the formation and desorption of biphenyl. The adsorbed phenyls are located above hollow sites in the substrate, they are stabilized at the top and bottom of step edges and in paired chains (1.1 nm apart) on the terraces with a regular interphenyl spacing within the chains of 1.0 nm in the (110) direction. The interphenyl ring spacing and diffusion of individual phenyls from within the chains shows that the chains do not consist of biphenyl species but may be a precursor to their formation. Although the XPS data shows carbon present at the Ag(111) surface after exposure to PhI, no features attributable to phenyl groups were observed by STM.  相似文献   

9.
Scanning tunneling microscopy (STM) and low-energy electron diffraction were used to reveal the structures of ordered adlayers of [2+2]-type C60-C60 fullerene dimer (C120) and C60-C70 cross-dimer (C130) formed on Au(111) by immersingit in abenzene solution containing C120 or C130 molecules. High-resolution STM images clearly showed the packing arrangements and the electronic structures of C120 and C130 on the Au(111) surface in ultrahigh vacuum. The (2 square root3 x 4square root3)R30 degrees, (2square root3 x 5square root3)R30 degrees, and (7 x 7) structures were found for the C120 adlayer on the Au(111) surface, whereas C130 molecules were closely packed on the surface. Each C60 or C70 monomer cage was discerned in the STM image of a C130 molecule.  相似文献   

10.
This work presents characteristics of Pt deposits on Au(111) obtained by the use of spontaneous deposition and investigated by electrochemical scanning tunneling microscopy (EC-STM). On such prepared and STM characterized Au(111)/Pt surfaces, we studied electrocatalytic oxidation of formic acid and methanol. We show that the first monatomic layer of Pt displays a (square root 3 x square root 3)R30 degrees surface structure, while the second layer is (1 x 1). After prolonged deposition, multilayer Pt deposits are formed selectively on Au(111) surface steps and are 1-20 nm wide and one to five layers thick. On the optimized Au(111)/Pt surface, formic acid oxidation rates are enhanced by a factor of 20 compared to those of pure Pt(111). The (square root 3 x square root 3)R30 degrees-Pt yields very low methanol oxidation rates, but the rates increase significantly with further Pt growth.  相似文献   

11.
CuO/Al2O3, CuO/CeO2-Al2O3, and CuO/La2O3-Al2O3 (denoted as Cu/Al, Cu/CeAl, and Cu/LaAl) catalysts were prepared by an impregnation method. CuO species and CuO/Al2O3 thermal solid-solid interaction were characterized by in situ XRD, Raman spectroscopy and H2-TPR techniques. For the Cu/Al catalyst, a CuAl2O4 phase exists between the CuO and Al2O3 layer and the CuO phase exists on the surface in both highly dispersed and bulk forms. For the Cu/CeAl catalyst, there is highly dispersed and bulk CuO on the surface, but most of the CuO has transferred into the internal layer of CeO2 as bulk CuO and CuAl2O4. For the Cu/LaAl catalyst, only bulk CuO is present on the surface of the catalyst and no CuAl2O4 is formed. The catalytic activity order for CO oxidation is Cu/CeAl>Cu/Al>Cu/LaAl. The highly dispersed CuO on the catalyst surface may be the active phase for CO oxidation. The results show that the addition of CeO2 not only promotes both the transference of CuO and the formation of CuAl2O4 but also favors the CO oxidation due to the association of highly dispersed CuO with CeO2, while La2O3 hinders the transference of CuO and the formation of CuAl2O4.  相似文献   

12.
We report the first scanning tunneling microscope (STM) investigation, combined with density functional theory calculations, to resolve controversy regarding the bonding and structure of chlorine adsorbed on Au(111). STM experiments are carried out at 120 K to overcome instability caused by mobile species upon chlorine adsorption at room temperature. Chlorine adsorption initially lifts the herringbone reconstruction. At low coverages (<0.33 ML), chlorine binds to the top of Au(111)-(1 x 1) surface and leads to formation of an overlayer with (square root(3) x square root(3))R30 degree structure at 0.33 ML. At higher coverages, packing chlorine into an overlayer structure is no longer favored. Gold atoms incorporate into a complex superlattice of a Au-Cl surface compound.  相似文献   

13.
The reduction of the Ag(111)-p(4x4)-O surface oxide with CO was used to study the restructuring of the surface during reaction. Scanning tunneling microscopy images taken during the reaction show the formation of Ag islands and pits within the reacted areas surrounded by unreacted p(4x4)-O. The number of Ag adatoms incorporated in the Ag(111)-p(4x4)-O structure was determined to be 12 from the areas of these islands and pits. The evolution of the reacted area with exposure to CO indicates that direct reaction with the Ag(111)-p(4x4)-O is not preferred, but that the boundary between the p(4x4) and the freshly created Ag(111) surface is the source of the reactive oxygen.  相似文献   

14.
Scanning tunneling microscopy (STM) was employed to study the mechanism for the oxidation of Al(111) with thermal O2 and NO in the 20%-40% monolayer coverage regime. Experiments show that the islands formed upon exposure to thermal O2 and NO have dramatically different shapes, which are ultimately dictated by the dynamics of the gas surface interaction. The circumference-to-area ratio and other island morphology statistics are used to quantify the average difference in the two island types. Ultrahigh-vacuum STM was employed to make the following observations: (1) Oxygen islands on the Al(111) surface, formed upon exposure to thermal oxygen, are elongated and noncompact. (2) Mixed O/N islands on the Al(111) surface, formed upon exposure to thermal nitric oxide (NO), are round and compact. (3) STM movies acquired during thermal O2 exposure indicate that a complex mechanism involving chemisorption initiated rearrangement of preexisting oxygen islands leads to the asymmetric and elongated island shapes. The overall mechanism for the oxidation of the Al(111) surface can be summarized in three regimes. Low coverage is dominated by widely isolated small oxygen features (<3 O atoms) where normal dissociative chemisorption and oxygen abstraction mechanisms are present. At 20%-40% monolayer coverage, additional oxygen chemisorption induces rearrangement of preexisting islands to form free-energy minimum island shapes. At greater than approximately 40% monolayer coverage, the apparent surface oxygen coverage asymptotes corresponding to the conversion of the 2D islands to 3D Al2O3 surface crystallites. The rearrangement of oxygen islands on the surface to form the observed islands indicates that there is a short-range oxygen-oxygen attractive potential and a long-range oxygen-oxygen repulsive potential.  相似文献   

15.
Underpotential deposition (UPD) of Ag on Au(111) has been studied with two different electrolytes: aqueous 0.1 M H2SO4 solution in comparison with the ionic liquid 1-butyl-3-methylimidazolium chloride BMICl + AlCl3. Of particular interest is the distinct behavior of 2D phase formation at both interfaces, which has been investigated by cyclic and linear sweep voltammetry in combination with in situ electrochemical scanning tunneling microscopy (STM). It is found that one monolayer (ML) of Ag is formed in the UPD region in both electrolytes. In aqueous solution, atomically resolved STM images at 500 mV versus Ag/Ag+ show a (3 x 3) adlayer of Ag, whereas after sweeping the potential just before the commencement of the bulk Ag deposition, a transition from expanded (3 x 3) to pseudomorphic ML of Ag on Au(111) occurs. In BMICl-AlCl3, the first UPD process of Ag exhibits two peaks at 410 and 230 mV indicating that two distinct processes on the surface take place. For the first time, STM images with atomic resolution reveal a transition from an inhomogeneous to an ordered phase with a (square root of 3 x square root of 3)R30 degrees structure and an adsorption of AlCl4- anions having a superlattice of (1.65 x square root of 3)R30 degrees preceding the deposition of Ag.  相似文献   

16.
The structural and electronic properties of Ce(1-x)Cu(x)O(2) nano systems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Cu atoms embedded in ceria had an oxidation state higher than those of the cations in Cu(2)O or CuO. The lattice of the Ce(1)(-x)Cu(x)O(2) systems still adopted a fluorite-type structure, but it was highly distorted with multiple cation-oxygen distances with respect to the single cation-oxygen bond distance seen in pure ceria. The doping of CeO(2) with copper introduced a large strain into the oxide lattice and favored the formation of O vacancies, leading to a Ce(1-x)Cu(x)O(2-y) stoichiometry for our materials. Cu approached the planar geometry characteristic of Cu(II) oxides, but with a strongly perturbed local order. The chemical activities of the Ce(1-x)Cu(x)O(2) nanoparticles were tested using the reactions with H(2) and O(2) as probes. During the reduction in hydrogen, an induction time was observed and became shorter after raising the reaction temperature. The fraction of copper that could be reduced in the Ce(1-x)Cu(x)O(2) oxides also depended strongly on the reaction temperature. A comparison with data for the reduction of pure copper oxides indicated that the copper embedded in ceria was much more difficult to reduce. The reduction of the Ce(1-x)Cu(x)O(2) nanoparticles was rather reversible, without the generation of a significant amount of CuO or Cu(2)O phases during reoxidation. This reversible process demonstrates the unusual structural and chemical properties of the Cu-doped ceria materials.  相似文献   

17.
The peculiarities of oxygen nonstoichiometry (δ) in tetragonal La(2-x)Sr(x)CuO(4-δ) solid solution with x(Sr) = 0.15-1.2 were studied by XRD, NPD, in situ high-temperature XPS, and chemical analysis. Temperature dependences of oxygen nonstoichiometry, δ = δ(T), were obtained for different Sr contents at 1 bar of O(2). Two types of charge compensation during replacement of lanthanum by strontium are discussed: an increase of the average copper oxidation state and a formation of oxygen vacancies. The average copper oxidation state V(Cu) exhibits a maximum of 2.32 at x(Sr) = 0.6, while δ increases with x(Sr). Oxygen vacancies are unambiguously located on the 4c site ({CuO(2)} plane) for compositions with different strontium contents, which electronic state is described by the O 2p core electron peak at about 531 eV. Thermal stability of the solid solution in a vacuum is associated with the extraction of practically the entire oxygen from CuO(2) layers and the formation of Cu(+) at least in the near-surface region. The higher average copper oxidation state after synthesis in the Sr-rich phases in comparison with the Sr-poor compositions prevents oxygen removal and the formation of Cu(+) and, therefore, stabilizes the structure during heating in a vacuum.  相似文献   

18.
A Cu1O1.7 oxide film containing a large amout of superstoichiometric oxygen was obtained by low-temperature oxidation of metallic copper in the oxygen plasma. An STM study of the film structure showed that ~10 nm planar copper oxide nanocrystallites with particles packed parallel to the starting metal surface. In an XPS study, the spectral characteristics of the Cu2p and O1s lines indicated that particles with a CuO lattice formed (E bnd(Cu2p 3/2) = 933.3 eV and a shake-up satellite, E bnd(O1s) = 529.3 eV). The additional superstoichiometric oxygen is localized at the sites of contact of nanoparticles in the interunit space and is characterized by a state with the binding energy E bnd(O1s) = 531.2 eV. Due to the formation of a nanostructure in the films during low-temperature plasma oxidation, the resulting copper oxide has a much lower thermal stability than crystalline oxide CuO.  相似文献   

19.
Cu(x)Ce(1-x)O(2-y) mixed oxide catalysts were prepared by different preparation procedures: co-precipitation, the sol-gel peroxide route, and the sol-gel citric acid-assisted route. The resulting solids were investigated by means of XRD, BET, H(2) and CO temperature-programmed reduction (TPR), oxidation (TPO) and desorption (TPD) analyses, and N(2)O pulse selective reaction. It was confirmed that H(2) (CO) consumed for complete reduction of well-dispersed and bulk-like CuO phases to Cu(0), reduction of surface ceria and H(2) (CO) adsorption on the catalyst surface contribute to the total H(2) (CO) consumption. Among catalysts examined, the Cu(0.15)Ce(0.85)O(2-y) mixed oxide sample prepared by means of co-precipitation method exhibits the highest activity and stability for water-gas shift (WGS) pulse reaction in the range of employed operating conditions. WGS activity of copper-ceria mixed oxide catalysts is determined by the extent of surface ceria reduction and dispersion of copper species.  相似文献   

20.
The surface structure of dodecanethiolate self-assembled monolayers (SAMs) on Au(111) surfaces, formed from the liquid phase, have been studied by grazing incidence X-ray diffraction (GIXRD), scanning tunneling microscopy (STM), and electrochemical techniques. STM images show that the surface structure consists of (square root 3 x square root 3)-R30 degrees domains with only a few domains of the c(4 x 2) lattice. The best fitting of GIXRD data for the (square root 3 x square root 3)-R30 degrees lattice is obtained with alkanethiolate adsorption at the top sites, although good fittings are also obtained for the fcc and hcp hollow sites. On the basis of this observation, STM data, electrochemical measurements, and previously reported data, we propose a two-site model that implies the formation of incoherent domains of alkanethiolate molecules at top and fcc hollow sites. This model largely improves the fitting of the GIXRD data with respect to those observed for single adsorption sites and, also, for the other possible two-site combinations. The presence of alkanethiolate molecules adsorbed at the less favorable top sites could result from the adsorption pathway that involves an initial physisorption step which, for steric reasons, takes place at on top sites. Once the molecules are chemisorbed, the presence of energy barriers for alkanethiolate surface diffusion, arising mostly from chain-chain interactions, "freezes" some of them at the on top sites, hindering their movement toward fcc hollow sites. By considering the length of the hydrocarbon chain and the adsorption time, the two-site model could be a tool to explain most of the controversial results on this matter reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号