首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Ten organotin derivatives with dithiocarbamates of the formulae (4‐NCC6H4CH2)2Sn(S2CNEt2)2 (1), (4‐NCC6H4CH2)2Sn(S2CNBz2)2 (2), (4‐NCC6H4CH2)2Sn[S2CN(CH2CH2)2NCH3]2 (3), (2‐ClC6H4CH2)2 Sn(S2CNEt2)2 (4), (2‐ClC6H4CH2)2Sn(S2CNBz2)2 (5), (4‐NCC6H4CH2)2Sn(Cl)S2CNEt2 (6), (4‐NCC6H4CH2)2Sn(Cl)S2CNBz2 (7), (4‐NCC6H4CH2)2Sn(Cl)S2CN(CH2CH2)2NCH3 (8), (2‐ClC6H4CH2)2 Sn(Cl)S2CNEt2 (9) and (2‐ClC6H4CH2)2Sn(Cl)S2CNBz2 (10) have been prepared. All complexes were characterized by elemental analyses, IR and NMR. The crystal structures of complexes 1 and 10 were determined by X‐ray single crystal diffraction. For complex 1, the central tin atom exists in a skew‐trapezoidal planar geometry defined by two asymmetrically coordinated dithiocarbamate ligands and two 4‐cyanobenzyl groups. In addition, because of the presence of close intermolecular non‐bonded contacts, complex 1 is a weakly‐bridged dimer. In complex 10, the central tin atom is rendered pentacoordinated in a distorted trigonal bipyramidal configuration by coordinating with S atoms derived from the dithiocarbamate ligand. In vitro assays for cytotoxicity against five human tumor cell lines (MCF‐7, EVSA‐T, WiDr, IGROV and M226) furnished the significant toxicities of the title complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
N,N-Dimethylneopentylamine reacts with Pd(MeCO2)2 to give a novel trinuclear cyclopalladated complex [Me2NCH2CMe2CH2Pd(μ-MeCO2)2Pd(μ-MeCO2)2PdCH2CMe2CH2NMe2]?-0.5C6H6 (I). The reaction of I with PPh3 affords both trans-[Pd(MeCO2)2(PPh3)2] (II) and [Pd(CH2CMe2CH2NMe2)(MeCO2)(PPh3)] (III). The reaction of III with LiCl yields a mononuclear cyclopalladated complex, [Pd(CH2CMe2CH2NMe2)Cl(PPh3)] (IV).  相似文献   

3.

Abstract  

The reaction of Me2PO2H and Me2AsO2H with SbCl3, BiCl3, and Bi(NO3)3·5H2O gave the complexes Sb(Me2PO2)3, Sb(Me2AsO2)3, (Me2PO2)2Bi-Cl, Bi(Me2AsO2)3, (Me2PO2)2Bi(NO3), and (Me2AsO2)2Bi(NO3)·H2O, respectively. The arsinato complexes did not react with the Lewis bases pyridine, Ph3P, and Ph3As in acetone. The compounds Sb(Me2AsO2)3 and (Me2AsO2)2Bi(NO3)·H2O reacted to a small extent with nicotinic acid in methanol but Bi(Me2AsO2)3 gave (Me2AsO2-BiO) x in good yields. (Me2AsO2)2Bi(NO3)·H2O in methanol quantitatively rearranged to new complexes with the same composition, [(Me2AsO2)2Bi(NO3)·H2O]′ and [(Me2AsO2)2Bi(NO3)·H2O]″ in the presence of pyridine. With thiophenol in air, Sb(Me2AsO2)3 gave PhSSPh and Me2As-SPh (1:1 mol ratio), (Me2AsO2-SbO) x and some Sb(Me2AsO2)3 was reformed, Bi(Me2AsO2)3 gave (Me2AsO2-BiO) x , PhSSPh, and Me2As-SPh (1:0.6 mol ratio), whereas (Me2AsO2)2Bi(NO3)·H2O quantitatively gave PhSSPh, thus acting as a catalyst for the air oxidation of thiophenol.  相似文献   

4.
Organotin derivatives of dimethyldithioarsinic (dithocacodylic) acid have been obtained from the appropriate organotin chloride and the sodium salt of the latter. Tin(IV) chloride and NaS2AsMe2 · 2 H2O yielded only two products, namely Cl2Sn(S2AsMe2)2 and Sn (S2AsMe2)4, regardless of the reagent ratio. Spectroscopic characterization of the compounds (infrared and1H NMR) provides structural information suggesting that the dimethyldithioarsinato group behaves as monodentate (or anisobidentate) ligand in Me2Sn(S2AsMe2)2, Bu2Sn-(S2AsMe2)2 and Cy3Sn(S2AsMe2), as bidentate in Ph2Sn(S2AsMe2)2, Ph3Sn(S2AsMe2) and Cl2As(S2AsMe2)2, whereas Sn(S2AsMe2)4 contains both mono- and bidentate ligands, presumably in a six-coordinate structure.  相似文献   

5.
The Formation of Disilylphosphino-Element Compounds of C, Si, P The reactions of (me3Si)2PLi · OR2 a (OR2 = 1 monoglyme or 2 THF; me = CH3) with CH3Cl, CH2Cl2, ClCH2CH2Cl and ClCH2? C6H5 give the compounds (me3Si)2Pme, (me3Si)2P? CH2? P(Sime3)2, (me3Si)2P? CH2CH2Cl, (me3Si)2P? CH2CH2? P(Sime3)2 and (me3Si)2P? CH2C6H5 respectively. In the same manner a reacts with me2SiCl2 in a molar ratio 1:1 to (me3Si)2P? Sime2Cl and in a molar ratio 2:1 to (me3Si)2P? Sime2? P(Sime3)2 b . The compound b decomposes to [me3SiP? Sime2]2 and (me3Si)3P at 220°C. In the reactions of a with ClP(C6H5)2 and ClPme2 the compounds (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively, are obtained. a reacts with HgCl2 to (me3Si)2P? P(Sime3)2. (me3Si)3P can be cleaved with ClP(C6H5)2 and ClPme2 yielding (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively. The 1H- and 31P-n.m.r. and mass spectroscopic data are reported.  相似文献   

6.
Tungsten Complexes of Diphosphanylacetylenes Diphosphanylacetylenes, R2P? C?C? PR2 [R?N(C2H5)2 ( 1 ), N[(CH2)2]2O ( 2 ), OCH3 ( 3 )] and W(CO)5 · tetrahydrofurane form the mononuclear complexes R2P? C?C? PR2 · W(CO)5 [R?N(C2H5)2 ( 1a ), N[(CH2)2]2O ( 2a )], the dinuclear complexes (CO)5W? PR2? C?C? PR2? W(CO)5 [R?N(C2H5)2 ( 1b ), N[(CH2)2]2O ( 2b ), OCH3 ( 3b )], and the trinuclear complex (CO)5W? PR2? C?C? PR2? W(CO)4? PR2? C?C? PR2? W(CO)5 [R?N(C2H5)2 ( 4 )]. The new compounds are characterized by their NMR, mass, and IR spectra. The results of an X-ray structural analysis of 4 are reported.  相似文献   

7.
Diphenylphosphorylazide N3P(O)(OPh)2 reacts with Pt(PPh3)3, Pt(PPh3)2(C2H4), trans-RhCl(CO)(PPh3)2, Ru(CO)3(PPh3)2, CoCl2(PPh3)2 and CuCl(PPh3)2 to give the azido complexes Pt(PPh3)2(N3)R, Pt(PPh3)2(N3)2R2, the urylene complex RhCl(PPh3)2(RNCONR) and the phosphine imine complexes Ru(CO)3(RPPh3)2, CoCl2(RNPPh3)2, CuCl(RNPPh3)2, respectively, (RP(O)(OPh)2). The oxidative addition of n-C6F13SO2N3 to Pt(PPh3)4 and Pt(PPh3)2(C2H4) affords the complexes Pt(PPh3)2(N3)R and Pt(PPh3)2(N3)2R2, respectively, (RSO2C6F13. The compounds are characterized by elemental analysis and by their IR spectra.  相似文献   

8.
Co-ordinative Properties of Chelating Ligands of the Type Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) The reactions of the ligands L ? Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) with M(CO)6 and M(CO)4norbor (norbor ? norbornadiene) (M ? Cr, Mo), respectively, yield derivatives of the types M(CO)5L, M(CO)4L, and M(CO)4L2, respectively. M(CO)5L compounds are formed from the hexacarbonyls with Me2NSiMe2CH2PMe2, whereas the ligand Me2NSiMe2CH2NMe2 does not afford analogous derivatives under the same conditions. Even on substitution of the diene-ligand in M(CO)4norbor by Me2NSiMe2CH2PMe2 the chelate complexes M(CO)4NMe2SiMe2CH2PMe2 are not obtained, but the cis-disubstituted products M(CO)4[PMe2CH2SiMe2NMe2]2 with phosphorus acting as donor atom are produced. The ligands Me2PSiMe2CH2XMe2(X ? N, P) give the chelate complexes M(CO)4PMe2SiMe2CH2XMe2 in high yields. The new compounds were identified by analytical and spectroscopic (PMR, IR, mass spectra) methods.  相似文献   

9.
Alternative Ligands. XXIII Rhodium(I) Complexes with Donor/Acceptor Ligands of the Type (Me2PCH2CH2)2SiX2 and (2-Me2PC6H4)SiXMe2 (X = F, Cl) Donor/acceptor ligands of the type (Me2PCH2CH2)2SiX2 and (2-Me2PC6H4)SiXMe2 (X = F, Cl) react with [Rh(CO)2Cl]2 (1) to give the mononuclear complexes RhCl(CO)(Me2PCH2CH2)2SiX2 [X = F( 4 ), Cl ( 5 )] and RhCl(CO)[2-Me2PC6H4)SixMe2]2 [X = F ( 8 ), Cl ( 9 )], respectively. In case of the ligands (Me2PCH2CH2)2SiCl2 ( 3 ) and (2-Me2PC6H6)SiClMe2 ( 7 ) the Rh(I) complexes formed in the first step partly undergo oxidative addition reactions of SiCl bonds yielding rhodium(III) compounds of low solubility. Only for 8 the coordination shifts Δδ = δ(complex)?δ(ligand) and coupling constants give some indication to possible Rh→Si interactions. However, the molecular structure of 8 determined by X-ray diffraction does not show RhSi or RhF bonding contacts. The new compounds were characterized by analytical (C, H) and spectroscopic investigations (MS, IR,-NMR).  相似文献   

10.
1-(3"-Amino)propylsilatrane (I) and 1-(3"-acetamido)propylsilatrane (II) react with anhydrous cobalt(II) chloride to give dichlorobis[1-(3"-amino)propylsilatrane]cobalt(II) {Co[NH2CH2CH2CH2Si(OCH2CH2)3N]2Cl2} (III) and dichlorobis[1-(3"-acetamido)propylsilatrane]cobalt(II) {Co[CH3C(O)NHCH2CH2CH2Si(OCH2CH2)3N]2Cl2} (IV). Being unstable, compound IV transforms into an imidic acid derivative. Reactions of silatranes I and II with dicobalt octacarbonyl afford hexakis[1-(3"-aminoamido)propylsilatrane]cobalt(II) bis(tetracarbonylcobaltate) {Co[NH2CH2CH2CH2Si(OCH2CH2)3N]4.8[HC(O)NHCH2CH2CH2Si(OCH2CH2)3N]1.2}[Co(CO)4]2 (V) and hexakis[1-(3"-acetamido)propylsilatrane]cobalt(II) bis(tetracarbonylcobaltate) {Co[CH3C(O)NHCH2CH2CH2Si(OCH2CH2)3N]6}[Co(CO)4]2 (VI), respectively. In acetonitrile, tetracarbonylcobaltate anions of compound VI are oxidized with atmospheric oxygen and moisture to cobalt hydroxocarbonate, giving a carbonate gel (VII).  相似文献   

11.
Synthesis and Characterization of New Intramolecularly Nitrogen‐stabilized Organoaluminium‐ and Organogallium Alkoxides The intramolecularly nitrogen stabilized organoaluminium alkoxides [Me2Al{μ‐O(CH2)3NMe2}]2 ( 1a ), Me2AlOC6H2(CH2NMe2)3‐2,4,6 ( 2a ), [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]2 ( 3a ) and [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NHCH2Ph}]2 ( 4 ) are formed by reacting equimolar amounts of AlMe3 and Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, (S)‐i‐PrNHCH(i‐Pr)CH2OH, or (S)‐PhCH2NHCH(i‐Pr)CH2OH, respectively. An excess of AlMe3 reacts with Me2N(CH2)2OH, Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, and (S)‐i‐PrNHCH(i‐Pr)CH2OH producing the “pick‐a‐back” complexes [Me2AlO(CH2)2NMe2](AlMe3) ( 5 ), [Me2AlO(CH2)3NMe2](AlMe3) ( 1b ), [Me2AlOC6H2(CH2NMe2)3‐2,4,6](AlMe3)2 ( 2b ), and [(S)‐Me2AlOCH2CH(i‐Pr)NH‐i‐Pr](AlMe3) ( 3b ), respectively. The mixed alkyl‐ or alkenylchloroaluminium alkoxides [Me(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 6 ) and [{CH2=C(CH3)}(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 8 ) are to obtain from Me2AlCl and Me2N(CH2)2OH and from [Cl2Al{μ‐O(CH2)2NMe2}]2 ( 7 ) and CH2=C(CH3)MgBr, respectively. The analogous dimethylgallium alkoxides [Me2Ga{μ‐O(CH2)3NMe2}]2 ( 9 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]n ( 10 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NHCH2Ph}]n ( 11 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)N(Me)CH2Ph}]n ( 12 ) and [(S)‐Me2Ga{μ‐OCH2(C4H7NHCH2Ph)}]n ( 13 ) result from the equimolar reactions of GaMe3 with the corresponding alcohols. The new compounds were characterized by elemental analyses, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and mass spectrometry. Additionally, the structures of 1a , 1b , 2a , 2b , 3a , 5 , 6 and 8 were determined by single crystal X‐ray diffraction.  相似文献   

12.
Investigations on Lithiation and Substitution of HP[Si(t-Bu)2]2PH HP[Si(t-Bu)2]2PH 1 is monolithiated by reaction with LiPH2 · DME or LiBu in toluene. The crystalline compound HP[Si(t-Bu)2]2PLi · 2 DME 2 can be isolated in DME. Reaction of 2 with Me2SiCl2 leads to HP[Si(t-Bu)2]2P? SiMe2Cl 4 , ClMe2Si? P[Si(t-Bu)2]2P? SiMe2Cl 5 , HP[Si(t-Bu)2]2P? SiMe2? P[Si(t-Bu)2] 2PH 6 . Isomerization by Li/H migration between 4 and 2 leads to the formation of 5 . Reaction of Li(t-Bu) with 1 or 2 yields LiP[Si(t-Bu)2]2PLi 3 by further lithiation. 3 could not be obtained purely, only in a mixture with 2 . These compounds favourably generate with t-BuPCl2 in hexane Cl(t-Bu)P? P[Si(t-Bu)2]2P? P(t-Bu)Cl 9 , in THF HP[Si(t-Bu)2]2P? P(t-Bu)? P[Si(t-Bu)2]2 PH 12 (main product), 9 , H(t-Bu)P? P[Si(t-Bu)2]2P? P(t-Bu)Cl 10 , H(t-Bu)P? P[Si(t-Bu)2]2P? P(t-Bu)H 11 as well as HP[Si(t-Bu)2]2P? P(t-Bu)H 13 and HP[Si(t-Bu)2]2P? P(t-Bu)2 14 .  相似文献   

13.
Synthesis, X‐Ray Structure, and Multinuclear NMR Investigation of some intramolecularly Nitrogen stabilized Organoboron, ‐aluminum, and ‐gallium Compounds The intramolecularly nitrogen stabilized organoaluminum‐ and organoboron compounds Me2Al(CH2)3NMe2 ( 1 ), Me2AlC10H6‐8‐NMe2 ( 2 ), iPr2Al(CH2)3NEt2 ( 3 ), (CH2)5Al(CH2)3NMe2 ( 4 ), and (CH2)5B(CH2)3NMe2 ( 5 ) are synthesized from Me2AlCl and the corresponding organolithium compounds and from AlCl3 or BCl3, the lithium alkyl and iPrMgCl or BrMg(CH2)5MgBr, respectively. AlCl3 and GaCl3 react with Li(CH2)3NMe2 or LiCH2CHMeCH2NMe2 forming Cl2AlCH2CHMeCH2NMe2 ( 6 ), Cl2Al(CH2)3NMe2 ( 8 ), and Cl2Ga(CH2)3NMe2 ( 9 ). The reaction of 6 and of 8 or 9 with BrMg(CH2)5MgBr and BrMg(CH2)6MgBr, respectively, yields (CH2)5AlCH2CHMeCH2NMe2 ( 7 ), (CH2)6Al(CH2)3NMe2 ( 10 ), and (CH2)6Ga(CH2)3NMe2 ( 11 ). MeAlCl2, made by the redistribution reaction of AlCl3 with Me2AlCl, reacts with 2 equivalents of Li(CH2)3NMe2 yielding MeAl[(CH2)3NMe2]2 ( 12 ) and with MeN[(CH2)3MgCl]2 under formation of MeAl[(CH2)3]2NMe ( 13 ). MeAlCl2, MeGaCl2, or GaCl3 accordingly react with one equivalent of organolithium reagent to give the intramolecularly nitrogen stabilized organoaluminum and organogallium chlorides MeClAl(CH2)3NMe2 ( 14 ), MeClGa(CH2)3NMe2 ( 15 ), MeClGaC6H4‐2‐CH2NMe2 ( 16 ) as well as Cl2GaC6H4‐2‐CHMeNMe2 ( 17 ). The compounds were characterized by elemental analyses, mass spectroscopy, 1H, 11B, 13C and 27Al NMR investigations. Single crystal X‐ray structure analyses of 1 , 2 , 4 , 5 and 17 reveal the monomeric molecular structures with intramolecular nitrogen coordination.  相似文献   

14.
宋礼成  张文雄  胡青眉 《中国化学》2002,20(11):1421-1429
IntroductionTherehasbeenrecentresearchinterestincrystalen gineeringandthedesignofsupramoleculararchitectures .1Byselectingthechemicalstructureofligandsandtheco ordinationgeometryoftransitionmetalions ,theorganic/inorganichybridmaterialsmayyieldaseriesofn…  相似文献   

15.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

16.
The synthesis and structural characterization of the first coordination compounds of bis(diphosphacyclobutadiene) cobaltate anions [M(P2C2R2)2]? is described. Reactions of the new potassium salts [K(thf)3{Co(η4‐P2C2tPent2)2}] ( 1 ) and [K(thf)4{Co(η4‐P2C2Ad2)2}] ( 2 ) with [AuCl(tht)] (tht=tetrahydrothiophene), [AuCl(PPh3)] and Ag[SbF6] afforded the complexes [Au{Co(P2C2tPent2)2}(PMe3)2] ( 3 ), [Au{Co(P2C2Ad2)2}]x ( 4 ), [Ag{Co(P2C2Ad2)2}]x ( 5 ), [Au(PMe3)4][Au{Co(P2C2Ad2)2}2] ( 6 ), [K([18]crown‐6)(thf)2][Au{Co(P2C2Ad2)2}2] ( 7 ), and [K([18]crown‐6)(thf)2][M{Co(P2C2Ad2)2}2] ( 8 : M=Au 9 : M=Ag) in moderate yields. The molecular structures of 2 and 3 , and 6 – 9 were elucidated by X‐ray crystallography. Complexes 4 – 9 were thoroughly characterized by 31P and 13C solid state NMR spectroscopy. The complexes [Au{Co(P2C2Ad2)2}]x ( 4 ) and [Ag{Co(P2C2Ad2)2}]x ( 5 ) exist as coordination polymers in the solid state. The linking mode between the monomeric units in the polymers is deduced. The soluble complexes 1 – 3 , 6 , and 7 were studied by multinuclear 1H‐, 31P{1H}‐, and 13C{1H} NMR spectroscopy in solution. Variable temperature NMR measurements of 3 and 6 in deuterated THF reveal the formation of equilibria between the ionic species [Au(PMe3)4]+, [Au(PMe3)2]+, [Co(P2C2R2)2]?, and [Au{Co(P2C2R2)2}2]? (R=tPent and Ad).  相似文献   

17.
(NEt4)2[WIVO(S2C2(CN)2)2] (1), isolated by reaction of Na2 WO4, Na2S2C2(CN)2 (Na2mnt) in acidified (pH5.5) aqueous medium in the presence of excess of sodium dithionite and NEt4Br, reduces CO2/HCO 3 (pH 7.5) to yield HCOO and (NEt4)2[WVIO2(S2C2(CN)2)2] (2) mimicking tungsten-formate dehydrogenase (W-FDH) activity. (1) reacts with Na2MoO4 in acidic medium to produce [MoIvO(S2C2(CN)2)2]2− implicating the displacement of tungsten by molybdenum from the cofactor complex in W-FDH.  相似文献   

18.
Syntheses and Properties of Pentafluoroethylcopper(I) and ‐copper(III) Compounds: CuC2F5 · D, [Cu(C2F5)2], and (C2F5)2CuSC(S)N(C2H5)2 The reactions of Cd(C2F5)2 · D and Zn(C2F5)2 · D (D = 2 CH3CN, 2 DMF), respectively, with copper(I) halides in the presence of halides quantitatively yield the CuC2F5 compounds CuC2F5 · D and [Cu(C2F5)2]. The CuC2F5 complexes are identified by NMR spectroscopy, while [Cu(C2F5)2] is isolated as PNP salt (PNP = (C6H5)3PNP(C6H5)3+). Both compounds are excellent C2F5 group transfer reagents, even at low temperature. Oxidation of [Cu(C2F5)2] with [(C2H5)2NC(S)S]2 yields the crystalline Cu(III) compound (C2F5)2CuSC(S)N(C2H5)2 (monoclinic, C2/c).  相似文献   

19.
Summary The organofunctional trisiloxanes Me3SiOSiMe(R)OSiMe3 [R=(CH2)2PPh2, (CH2)3C5H4N, (CH2)3CN, (CH2)2Ph, (CH2)2SPh, CH=CH2 and CH2CH=CH2] have been reacted with metal halide and-carbonyl moieties in order to determine the coordination preferences of materials being used as models for metallated longchain linear functionalised polysiloxanes. The products [Me3SiOSiMe(R)OSiMe3]3MLn [R=(CH2)2PPh2, MLn=RhCl],cis-[Me3SiOSiMe(R)OSiMe3]2MLn [R=(CH2)2PPh2 or (CH2)3C5H4N, MLn=Mo(CO)4],trans-[Me3SiOSiMe(R)OSiMe3]2MLn[R=(CH2)2PPh2, MLn=NiCl2, PdCl2, PtCl2 and [Rh(CO)Cl] and [Me3SiOSiMe(R)OSiMe3]MLn [R=(CH2)2PPh2, MLn=Mo(CO)3(2,2-bipyridine); R=(CH2)2Ph, MLn=Mo(CO)3; R=(CH2)3C5H4N, (CH2)3CN, or (CH2)2SPh, MLn=Rh(CO)2Cl; R=CH=CH2 or CH2CH=CH2, MLn=Fe(CO)4] have been isolated and characterised spectroscopically in the course of these studies.  相似文献   

20.
Three structurally different metallasiloxanes were formed from reactions between in situ generated suspensions of Ph2Si(OH)2/BuLi (1∶2) in tetrahydrofuran (THF) with, metal dichlorides MgCl2·2THF, CrCl2, or CoCl2 followed by toluene/Py (Py=pyridine) work-up. The X-ray structures are reported for: [Mg{O(Ph2SiO)2}2]-μ-(LiPy)-μ-{(LiPy)3(OH)(Cl)] (1) incorporating two six-membered magnesiasiloxane rings and an MgLi3O3Cl cubane fragment, [{O(Ph2SiO)2}Co{O(Ph2SiO)3}-μ-(LiPy2)2] (2) with both six-and eight-membered cobaltasiloxane rings and [Cr{O(Ph2SiO)2}2-μ-(LiPy2)2] (3) with two six-membered chromiasiloxane rings. Structure assembly in these cases is apparently dictated by the metal dichloride. The compound [{O(Ph2SiO)2}Mg{O(Ph2SiO)3}-μ-(CoClPy)2]·Py (4) is formed from [{O(Ph2SiO)2}Mg{O(Ph2SiO)3}-μ-(LiPy2)2] and CoCl2 (1∶2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号