首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(S)-(?)-Perillyc acid (4-isopropenylcyclohexene-1-carboxylic acid) is an intermediate in the limonene and pinene pathway degradation and its measurement in urine is used to monitor cancer patients receiving oral limonene. For the first time, a theoretical study of the conformational preference in the monomer and H-bonded dimers complemented with a theoretical and experimental analysis of the infrared, raman, and vibrational vircular dichroism spectra of (S)-(?)-perillyc acid in solution and solid phases is presented. With regard to the monomer, theoretical calculations revealed the existence of two conformers depending on the position of the isopropenyl group (axial and equatorial) and 24 rotamers (12 equatorials and 12 axials). The study of the H-bonded dimers revealed great complexity in the conformational landscape with a total of 36 structures studied. Herein, from a reliable assignment of the IR and Raman spectra and with help from the study of the VCD spectrum of the title compound, the most stable rotamers of the H-bonded complexes have been detected experimentally in the liquid and solid phases. Additionally, natural bond orbitals (NBO) analysis indicates an electronic delocalization between the two subunits in the dimer. The IR, Raman, and VCD are helpful and complementary techniques to characterize flexible systems, such as terpenes, which present several conformers and H-bonded aggregates.  相似文献   

2.
The enantiomers of tert-butyl(dimethylamino)phenylphosphine-borane complex 2 have been separated by HPLC using cellulose tris-p-methylbenzoate as chiral stationary phase. The borane protection could be removed without racemization and the P-configuration of the free aminophosphine 1 has shown to be stable in solution. Infrared (IR) and vibrational circular dichroism (VCD) spectra have been measured in CD2Cl2 solution for both enantiomers. B3LYP/6-31+G(d) DFT calculations allowed a prediction that complex (S)-2 exists as three conformers in equilibrium and computed population-weighted IR and VCD spectra. Predicted and experimental IR and VCD spectra compared very well and indicate that enantiomer (+)-2 has the S absolute configuration. This assignment has been confirmed by an X-ray diffraction study on a single crystal of (+)-2. The crystal structure of enantiomerically pure 2 appears to be very close to the most stable computed conformer which proved to be predominant in solution.  相似文献   

3.
A combined theoretical and experimental study of the vibrational absorption (VA)/IR, vibrational circular dichroism (VCD), Raman and Raman optical activity (ROA) spectra of l-histidine in aqueous solution has been undertaken to answer the questions (i) what are the species present and (ii) which conformers of the species are present under various experimental conditions. The VA spectra of l-histidine have been measured in aqueous solution and the spectral bands which can be used to identify both species (cation, zwitterion, anion) and conformer of the species have been identified and subsequently used to identify the species (zwitterion) and conformer (gauche minus minus, gauche minus plus for the side chain dihedral angles) present in solution at pH 7.6. The VCD spectral intensities have been used subsequently in combination with further theoretical studies to confirm the conclusions that have been arrived at by only analyzing the VA/IR spectra. Finally a comparison of measured Raman and ROA spectra of l-histidine with Raman and ROA spectral simulations for the conformers and species derived from the combined VA/IR and VCD experimental and theoretical work is presented as a validation of the conclusions arrived at from VA/IR and VCD spectroscopy. The combination of VA/IR and VCD with Raman and ROA is clearly superior and both sets of experiments should be performed.  相似文献   

4.
The enantiomers of 2-(2-chlorophenoxy) propanoic acid and 2-(3-chlorophenoxy) propanoic acid were resolved on a chiral HPLC column and investigated using mid-infrared vibrational circular dichroism (VCD). Experimental infrared vibrational absorption and VCD spectra were measured in CDCl3 solution in the 2000-900 cm-1 region and compared with the ab initio predictions of absorption and VCD spectra. The predicted spectra were obtained with density functional theory using B3LYP/6-31G* basis set for the stable and dominant conformers. But the predicted spectra did not provide unambiguous structural information due to intermolecular hydrogen bonding in solution. To eliminate the hydrogen bonding effects, the acids were converted to the corresponding methyl esters and the experimental absorbance and VCD spectra of methyl esters were measured. B3LYP predicted spectra were also obtained for the stable and dominant conformers of the esters. From a comparison of the experimental VCD spectra of methyl esters with corresponding ab initio predictions, the absolute configurations of esters, and therefore of their parent acids, are unambiguously determined to be (+)-(R).  相似文献   

5.
We present the determination of the conformational properties of aeroplysinin-1 in aqueous solution by means of a combined experimental and theoretical Raman optical activity (ROA) and vibrational circular dichroism (VCD) study. Aeroplysinin-1 is an antiangiogenic drug extracted from the sponge Aplysina cavernicola which has been proved to be a valuable candidate for the treatment of cancer and other antiangiogenic diseases. Our study shows that this molecule possesses the 1S,6R absolute configuration in aqueous solution, where only two conformers are present to a significant level. We discuss in detail the relationships between the chiro-optical ROA and VCD features, and the structural properties of various energy accessible conformers are described. The present work is one of the first studies in which both ROA and VCD have been used as complementary tools for the determination of absolute configuration and dominant solution-state conformations of an unknown therapeutically significant molecule.  相似文献   

6.
Vibrational absorption and circular dichroism (VCD) spectra of (-)-(1S,3R)-camphanic acid have been measured in deuterated chloroform solutions at different concentrations (0.005, 0.045, and 0.200 M) in the mid-infrared spectral range. Experimental spectra have been compared with the density functional theory (DFT) absorption and VCD spectra, calculated using the B3PW91 functional and cc-pVTZ basis set for three conformers of both the monomer and the dimer forms of (-)-(1S,3R)-camphanic acid. These calculations indicate that, in the dilute solution, the conformer with intramolecular hydrogen-bonding between the hydroxyl and lactone groups is of lowest energy and represents 70% of the different monomer conformers at room temperature, whereas, in concentrated solution, the dimer formed by intermolecular hydrogen-bonding of carboxyl groups of the two distinct monomer conformations is stabilized. The vibrational absorption and circular dichroism spectra calculated from the Boltzmann population of the individual monomer and dimer conformers are in very good overall agreement with the corresponding experimental spectra, allowing the absolute conformation and configuration of (-)-(1S,3R)-camphanic acid in dilute and concentrated solution, respectively. Experiments were also performed on (-)-(1S,3R)-camphanic chloride for which the populations predicted by DFT calculations are found to be in disagreement with those deduced from experimental spectra.  相似文献   

7.
《Tetrahedron: Asymmetry》2007,18(16):1911-1917
(4S,7R)-(−) and (4S,7S)-(+)-4-isopropylidene-7-methyl-4,5,6,7-tetrahydro-2(1)H-indazoles 2a and 2b have been successfully separated by using HPLC over a Chiralpak AS column as the stationary phase, yielding up to 700 mg of each diastereomer. Their absolute configurations were determined by using vibrational circular dichroism (VCD) studies. This latter method proved not only very useful for determination of the conformers’ distribution, but also for analysis of the 1H,2H tautomers.  相似文献   

8.
A detailed analysis of the computed structure, energies, vibrational absorption (VA) and circular dichroism (VCD) spectra of 30 low‐energy conformers of dehydroquinidine reveals the existence of families of pseudo‐conformers, the structures of which differ mostly in the orientation of a single O?H bond. The pseudo‐conformers in a family are separated by very small energy barriers (i.e., 1.0 kcal mol?1 or smaller) and have very different VCD spectra. First, we demonstrate the unreliable character of the Boltzmann factors predicted with DFT. Then, we show that the large differences observed between the VCD spectra of the pseudo‐conformers in a family are caused by large‐amplitude motions involving the O?H bond, which trigger the appearance/disappearance of strong VCD exciton‐coupling bands in the fingerprint region. This interplay between exciton coupling and large‐amplitude‐motion phenomena demonstrates that when dealing with flexible molecules with polar bonds, vibrational averaging of VCD spectra should not be neglected. In this regard, the dehydroquinidine molecule considered here is expected to be a typical example and not the exception to the rule.  相似文献   

9.
A series of multidentate nitrogen donor ligands have been synthesized and characterized and their conformational distributions in solution have been investigated. Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy, complemented with DFT calculations, have been used to probe the conformations of these important ligands in solution directly. These three ligands demonstrate very different conformational flexibility; the pyridine subunits and amine groups may adopt a number of different conformations. Experimental VA and VCD data measured in CDCl3 have been compared to the theoretical spectra of all possible most stable conformers. Solvent effects have been taken into account by using the implicit polarizable continuum model and explicit solvation model. The explicit hydrogen‐bonding solvation model is important for explaining the VCD sign‐reverse phenomenon in the amide I region. Good agreement has been achieved between experimental and predicted spectra for all three ligands; thus allowing detailed examination of the related conformational structures and distributions in solution.  相似文献   

10.
In this work we present the experimental and theoretical vibrational absorption (VA) and the theoretical vibrational circular dichroism (VCD) spectra for aframodial. In addition, we present the theoretical VA and VCD spectra for the diasteriomers of aframodial. Aframodial has four chiral centers and hence has 24 = 16 diasteriomers, which occur in eight pairs of enantiomers. In addition to the four chiral centers, there is an additional chirality due to the helicity of the entire molecule, which we show by presenting 12 configurations of the 5S,8S,9R,10S enantiomer of aframodial. The VCD spectra for the diasteriomers and the 12 configurations of one enantiomer are shown to be very sensitive not only to the local stereochemistry at each chiral center, but in addition, to the helicity of the entire molecule. Here one must be careful in analyzing the signs of the VCD bands due to the ‘non-chiral’ chromophores in the molecule, since one has two contributions; one due to the inherent chirality at the four chiral centers, and one due to the chirality of the side chain groups in specific conformers, that is, its helicity. Theoretical simulations for various levels of theory are compared to the experimental VA recorded to date. The VCD spectra simulations are presented, but no experimental VCD and Raman spectra have been reported to date, though some preliminary VCD measurements have been made in Stephens’ lab in Los Angeles. The flexible side chain is proposed to be responsible for the small size of the VCD spectra of this molecule, even though the chiral part of the molecule is very rigid and has four chiral centers. In addition to VCD and Raman measurements, Raman optical activity (ROA) measurements would be very enlightening, as in many cases bands which are weak in both the VA and VCD, may be large in the Raman and/or ROA spectra. The feasibility of using vibrational spectroscopy to monitor biological structure, function and activity is a worthy goal, but this work shows that a careful theoretical analysis is also required, if one is to fully utilize and understand the experimental results. The reliability, reproduceability and uniqueness of the vibrational spectroscopic experiments and the information which can be gained from them is discussed, as well as the details of the computation of VA, VCD and Raman (and ROA) spectroscopy for molecules of the complexity of aframodial, which have multiple chiral centers and flexible side chains. Festschrift in Honor of Philip J. Stephens’ 65th Birthday.  相似文献   

11.
Ab initio calculations together with vibrational circular dichroism (VCD) have been used for studying the conformations of a quinoline-derived oligoamide bearing a terminal chiral residue. Three helically folded conformers of the dimer, trimer, and tetramer forms of the oligomer were optimized at the density functional theory (DFT) level using the B3LYP functional and the 6-31G* basis set. For each form, the three conformers differ in their helical handedness and in the conformation of the chiral end group. The calculated structures of the tetramer and also the proportions predicted between them based on their calculated Gibbs free energies differences match remarkably well with experimental data collected on an octamer. Specifically, a R-phenethyl terminal group gives rise to a 91:9 ratio between left handed and right handed helices. The predicted VCD spectrum calculated from the Boltzmann population of the individual conformer reproduces very well the experimental VCD spectrum of the tetramer in CDCl3 solution. The DFT calculations performed for the trimer also allow one to assess the preferred handedness of the helix and the conformation of the chiral end group, but the calculated relative populations differ slightly from experimental data. Finally, this study shows that the dimer fragment is not sufficient to obtain valuable information on the conformation of this aromatic oligoamide foldamer.  相似文献   

12.
This paper presents a discussion of the interaction energies for selected conformers of chiral l-cysteine and their (1:1) complexes with water at the B3LYP/aug-cc-pVDZ level. From among more than forty calculated 1:1 complexes three groups of complexes were singled out and examined by the B3LYP/aug-cc-pVDZ calculated vibrational circular dichroism (VCD) spectra. On the basis of analysis of the nu(OmicronEta) and nu(NuEta) and beta(OH2) and beta(NH2) ranges, the VCD spectra were found to be sensitive to conformational changes and water arrangement in cysteine complexes, and to be especially useful for discriminating between different chiral forms of intermolecular hydrogen-bonding complexes. In particular, we show that the VCD modes of an achiral water molecule after complex formation acquire significant rotational strengths whose signs change in line with the geometry of the complex. Moreover, for some water arrangements the VCD spectra can be sensitive to water-wagging conformers and, in temperatures low enough, the intensive nu(OmicronEtaWfree) and beta(H2O) VCD bands may be sufficiently separated to be splitted into pair of oppositely directed bands.  相似文献   

13.
The infrared absorption (IR) spectra of acetyl-N-methyl-glycine and acetyl-N-methyl-alanine have been recorded in dichloromethane and dimethyl sulfoxide-d(6) solution, as well as in Ar and Kr matrices. The spectra were assigned with the help of quantum chemical calculations. Based on the assignments of the matrix-isolation IR spectra, in line with theoretical predictions, two different hydrogen bonded conformers were identified, furthermore a third conformer is likely to be present, which cannot be unambiguously identified. In dichloromethane two conformers could be observed, while in dimethyl sulfoxide a single conformer could be identified. Vibrational circular dichroism (VCD) spectra of acetyl-N-methyl-l-alanine have also been recorded in solutions and matrices. These matrix-isolation VCD spectra not only support the assignments of the matrix-isolation IR spectra, but also demonstrate that these spectra can be interpreted much easier with the help of quantum chemical calculations than the VCD spectra recorded in solutions. It is also shown that the rotatory strength of some vibrational transitions changes rapidly as a function of the backbone torsional coordinates; hence the appearance of some regions in the VCD spectra is extremely dependent on any perturbations, e.g. weak intermolecular interactions.  相似文献   

14.
Recently, it was observed that infrared (IR) and vibrational circular dichroism (VCD) calculations including deuterated hydroxyl groups in phenolic and saccharide moieties improved significantly the agreement with experimental data obtained in methanol-d4. In the present study, the relative and absolute configurations of three methanol-soluble caffeic acid ester derivatives 13, isolated from Tithonia diversifolia, were established by a combined use of experimental and calculated 13C NMR chemical shifts, as well as electronic circular dichroism (ECD) and VCD spectroscopies. Interestingly, the attempt to reproduce the deuteration pattern arising from possible isotopic exchange in methanol-d4 solution led to nearly mirror image calculated VCD spectra for 1 when compared to the non-deuterated molecule with the same absolute configuration. This latter fact can potentially lead to absolute configuration misassignments. A closer inspection of the vibrational chiroptical properties of 1 revealed that the deuteration status of the tertiary hydroxyl group at C-2 is critical for the correct reproduction of experimental VCD data in protic solvents. Therefore, in the case of stereochemical analysis of polar chiral natural product molecules, a combination of VCD and ECD is recommended.  相似文献   

15.
We report an extensive study of the molecular and electronic structure of (?)‐S‐nicotine, to deduce the phenomenon that controls its conformational equilibrium and to solve its solution‐state conformer population. Density functional theory, ab initio, and molecular mechanics calculations were used together with vibrational circular dichroism (VCD) and Fourier transform infrared spectroscopies. Calculations and experiments in solution show that the structure and the conformational energy profile of (?)‐S‐nicotine are not strongly dependent on the medium, thus suggesting that the conformational equilibrium is dominated by hyperconjugative interactions rather than repulsive electronic effects. The analysis of the first recorded VCD spectra of (?)‐S‐nicotine confirmed the presence of two main conformers at room temperature. Our results provide further evidence of the hypersensitivity of vibrational optical activity spectroscopies to the three‐dimensional structure of chiral samples and prove their suitability for the elucidation of solution‐state conformer distribution.  相似文献   

16.
S-(+)-carvone (5-isopropenyl-2-methylcyclohex-2-en-1-one) is the primary component in the oil of caraway. Different experimental and theoretical works reveal that there are two possible conformers in which the isopropenyl group can be in equatorial or axial position. For each one, three rotamers were found theoretically, with the equatorial rotamers around 95% of the whole statistical population. In the current work, from a complete assignment of the IR and Raman spectra and the results obtained from the study of the VCD spectrum of the title compound, the three most stable rotamers have been detected experimentally in the liquid phase for the first time. The present work reveals that IR, Raman and VCD are helpful complementary techniques to characterize flexible systems, as terpenes, which present several conformers.  相似文献   

17.
《Vibrational Spectroscopy》2010,52(2):318-325
S-(+)-carvone (5-isopropenyl-2-methylcyclohex-2-en-1-one) is the primary component in the oil of caraway. Different experimental and theoretical works reveal that there are two possible conformers in which the isopropenyl group can be in equatorial or axial position. For each one, three rotamers were found theoretically, with the equatorial rotamers around 95% of the whole statistical population. In the current work, from a complete assignment of the IR and Raman spectra and the results obtained from the study of the VCD spectrum of the title compound, the three most stable rotamers have been detected experimentally in the liquid phase for the first time. The present work reveals that IR, Raman and VCD are helpful complementary techniques to characterize flexible systems, as terpenes, which present several conformers.  相似文献   

18.
Vibrational circular dichroism (VCD) spectroscopic measurements and density functional theory (DFT) calculations have been used to obtain the absolute structural information about four sets of diastereomers of pentacoordinate spirophosphoranes derived separately from l‐ (or d‐ ) valine and l‐ (or d‐ ) leucine for the first time. Each compound contains three stereogenic centers: one at the phosphorus center and two at the amino acid ligands. Extensive conformational searches for the compounds have been carried out and their vibrational absorption (VA) and VCD spectra have been simulated at the B3LYP/6‐311++G** level. Although both VA and VCD spectra are highly sensitive to the structural variation of the apical axis, that is, the O? P? O or N? P? O arrangement, the rotamers generated by the aliphatic amino side chains show little effect on both. The dominant experimental VCD features in the 1100–1500 cm?1 region were found to be controlled by the chirality at the phosphorus center, whereas those at the C?O stretching region are determined by the chirality of the amino acid ligands. The good agreement between the experimental VA and VCD spectra in CDCl3 solution and the simulated ones allows us to assign the absolute configurations of these pentacoordinate phosphorus compounds with high confidence. This study shows that the VCD spectroscopy complemented with DFT calculations is a powerful and reliable method for determining the absolute configurations and dominating conformers of synthetic phosphorus coordination complexes in solution.  相似文献   

19.
The absolute configuration and solution-state conformers of three peperomin-type secolignans isolated from Peperomia blanda (Piperaceae) are unambiguously determined by using vibrational circular dichroism (VCD) spectroscopy associated with density functional theory (DFT) calculations. Advantages of VCD over the electronic form of CD for the analysis of diastereomers are also discussed. This work extends our growing knowledge about secondary metabolites within the Piperaceae family species while providing a definitive and straightforward method to assess the absolute stereochemistry of secolignans.  相似文献   

20.
We have prepared gold nanoparticles covered with N-isobutyryl-l-cysteine and N-isobutyryl-d-cysteine, respectively. These particles with a mean particle size smaller than 2 nm are highly soluble in water and are amenable to chiroptical techniques such as vibrational circular dichroism (VCD) and circular dichroism (CD) spectroscopy. Density functional theory shows that the VCD spectra are sensitive toward the conformation of the adsorbed thiol. Based on the comparison between the experimental VCD spectrum and the calculated VCD spectra for different conformers, a preferential conformation of the thiol adsorbed on the gold particles can be proposed. In this conformation the carboxylate group interacts with the gold particle in addition to the sulfur. The particles could furthermore be separated according to their charge and size into well-defined compounds. The optical absorption spectra revealed a well-quantized electronic structure and a systematic red-shift of the absorption onset with increasing gold core size, which was manifested in a color change with particle size. Some compounds showed basically identical absorption spectra as analogous gold particles protected with l-glutathione. This shows that these particles have identical core sizes (10-12, 15 and 18 gold atoms, respectively) and indicates that the number and arrangement of the adsorbed thiol are the same, independent of the two thiols, which have largely different sizes. Some separated compounds show strong optical activity with opposite sign when covered with the d- and l-enantiomer, respectively, of N-isobutyryl-cysteine. The origin of the optical activity in the metal-based transitions is discussed. The observations are consistent with a mechanism based on a chiral footprint on the metal core imparted by the adsorbed thiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号