首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magnetic and magnetotransport measurements were performed on gas-phase synthesized Fe nanoparticles subjected to surface oxidation and cold consolidation. Two samples were investigated with α-Fe volume fraction of 0.15 and 0.60. The sample with smaller metallic fraction is below the percolation threshold for metallic conduction and the conduction mechanism is dominated by thermally activated processes across the oxide. In this case, by lowering the temperature, an increase of the negative magnetoresistance is observed up to 5% at 50 K in a magnetic field of 70 kOe. The magnetoresistance dependence on the sample magnetization, temperature and sample composition is discussed considering the magnetic correlations present in these nanostrucuterd systems.  相似文献   

2.
The purpose of this paper is to investigate the isothermal behavior of Fe–27.3Mn–7.6Al–C–6.5Cr–0.25Si–0.88Mo (Mo(0)) and Fe–27.3Mn–7.6Al–1.0C–6.5Cr–0.25Si (Mo(1)) alloys and compare it against Fe–9Cr–1Mo (FCR) commercial alloy. The experiments were carried out at 600°C, 700°C, 750°C and 850°C, each one during 72 h in static air. The oxidation kinetics was measured as a function of time using a Thermogravimetry analyzer (TGA). The structure and composition of the oxide scale were characterized by X-ray diffraction (XRD) and Integral Conversion Electron Mössbauer Spectroscopy (CEMS). The TGA results show that at all oxidation temperatures the sample FCR exhibit the lowest kinetic corrosion and the lowest weight gain, whereas Mo(0) the highest. By CEMS technique it were found a broad magnetic sextet, which has been fit by one hyperfine field distribution with mean hyperfine field characteristic to ferritic/martensite phase, one Fe3?+? doublet and one singlet for the Mo(0) and Mo(1) alloys. Samples oxidized at highest temperatures exhibit a strong paramagnetic line, probably due that the Cr or Mn oxides may be enriched on the surface. Then, the magnetic phase can be converted partially into austenite phase at highest temperatures.  相似文献   

3.
《Physica B: Condensed Matter》2000,275(1-3):248-252
The energetic model of ferromagnetic hysteresis calculates the magnetic state of materials by minimizing the total energy function for statistical domain behavior. The approach shows good agreement with the magnetization curves of mechanically alloyed Pr9Fe85B6 powder, heat treated at different temperatures.  相似文献   

4.
Structure and magnetic properties of nanocrystalline P6/mmm out-of-equilibrium precursors of hard magnetic R-3m Sm2(Fe,M)17C (M=Ga,Si,) and I4/mmm Sm(Fe,Co,Ti)11 equilibrium phases, are presented. Their structure is explained with a model ground on the R1???s T5?+?2s formula (R=rare-earth, s=vacancy rate, T=transition metal) where s Sm atoms are statistically substituted by s transition metal pairs. The Rietveld analysis (RA) provides the stoichiometry of the precursors, 1:9 and 1:10, respectively precursor of 2:17 and 1:12 phases. The interpretation of the Mössbauer spectra of the 1:9 and 1:10 phases, is based on the correlation between δ and the Wigner–Seitz Cell volumes, calculated from the structural parameters. The δ behaviour of each crystallographic site versus Co content, defines the Co location while it confirms that of Si and Ga obtained by RA. Substitution occurs in 3 g site, whatever Co or M. The Sm(Fe,Co,Ti)10 and Sm(Fe,M)9C Curie temperature (Tc) are compared to those of the equilibrium phases, the effects of Fe substitution and C addition are discussed. The maximum μ 0Hc is obtained for low M or Co content, for auto-coherent diffraction domain size ~30 nm. SmFe8.75Ga0.25C and SmFe8.75Si0.25C with Tc of 680 and 690 K, show respectively Mr and μ 0Hc of 58 emu/g, 27 kOe and 95 emu/g, 15 kOe, values higher than those obtained for Sm2(Fe,M)17 carbides.  相似文献   

5.
Multilayers with Ag/Fe/B and Ag/B/Fe layer sequence were studied in order to reveal differences of top and bottom interfaces of Fe. The hyperfine field distribution depends on the layer sequence and the differences could be attributed to a different B concentration distribution at the top and bottom Fe–B interface.  相似文献   

6.
Nd content was varied in Nd_(13.2-x)Fe_(80.8+x)B_6(x = 0, 0.5, 1, and 1.5) to optimize the magnetic properties of sintered Nd–Fe–B/Tb–Fe–B composite magnets, which were prepared by mixing 9 g of Nd–Fe–B with 1 g of Tb_(17)Fe_(75)B_8 powder.In conventional magnets, by reducing Nd content, the coercivity of 10.4 kOe in Nd_(13.2)Fe_(80.8)B_6 decreases to 7.2 kOe in Nd_(12.2)Fe_(81.8)B_6; meanwhile, in Nd–Fe–B/Tb–Fe–B magnets the coercivity does not decrease when reducing Nd content.In the intergranular phase, the Tb content increases owing to the reducing Nd content of the Nd–Fe–B alloy in the sintered composite magnets.Therefore, the excess Tb in Tb_(17)Fe_(75)B_8 enters the intergranular phase, and more Tb atoms can substitute for Nd at the grain boundary of the Nd–Fe–B phase, leading to a more significant increase in coercivity.The remanence increases with reducing Nd content, and the energy product of 39.1 MGOe with a high coercivity of 21.0 kOe is obtained in Nd_(12.2)Fe_(81.8)B_6/Tb_(17)Fe_(75)B_8 magnets.These investigations show that magnetic properties can be further improved by regulating the element distribution in sintered composite magnets.  相似文献   

7.
Here, we report experimental results on melting and subsolidus phase relations in the Fe–Fe2P system at 6?GPa and 900–1600°C. The system has two P-bearing compounds: Fe3P and Fe2P. X-ray diffraction patterns of these compounds correspond to schreibersite and barringerite, respectively. The Fe–Fe3P eutectic appears at 1075°C and 16?mol% P. Schreibersite (Fe3P) melts incongruently at 1250°C to produce barringerite (Fe2P) and liquid containing 23?mol% P. Barringerite (Fe2P) melts congruently at 1575°C. Maximum solid solution of P in metallic iron at 6?GPa is 5?mol%. As temperature increases to 1600°C, the P solubility in the metallic iron decreases to 0.5?mol%, whereas the P content in coexisting liquid decreases to 3?mol%. The composition of quenched phases from Fe–P melt coincides with the compositions of equilibrium phases at corresponding temperature. Consequently, the composition of quenched products of Fe-P melts in meteorites can be used for reconstruction of P–T conditions of their crystallization under ambient or low pressures or during shock melting by impact collisions.  相似文献   

8.
The lattice dynamics of quasicrystals includes local phason jumps as well as phonons. Phason dynamics is important for the understanding of both the structure and atomic motion in quasicrystals, leading to short-ranged atomic motion not involving vacancies in addition to diffusion. We have studied the phason and phonon dynamics of icosahedral i-Al62Cu25.5Fe12.5. Quasielastic Mössbauer spectroscopy (QMS) was used to probe the iron phason dynamics. Inelastic nuclear-resonant absorption (INA) of synchrotron radiation and inelastic neutron scattering (INS) were used to study the iron-partial as well as the total vibrational DOS (VDOS). We find from preliminary QMS studies that iron atoms jump on a time scale about two orders of magnitude slower than that found for copper. The EFG shows an abrupt change in slope at ca. 825 K which may be related to a transition from simple (isolated) to more complicated (co-operative) phason jumps. From INA we find that the iron-partial VDOS differs radically from that of the total (neutron-weighted) generalised VDOS measured by INS. Both these properties are related to the specific local environments of Fe and Cu in i-AlCuFe.  相似文献   

9.
Yoon-Uk Heo  Hu-Chul Lee 《哲学杂志》2013,93(36):4519-4531
The effects of Al addition on the precipitation and fracture behaviour of Fe–Mn–Ni alloys were investigated. With the increasing of Al concentration, the matrix and grain boundary precipitates changed from L10 θ-MnNi to B2 Ni2MnAl phase, which is coherent and in cube-to-cube orientation relationship with the α′-matrix. Due to the suppression of the θ-MnNi precipitates at prior austenite grain boundaries (PAGBs), the fracture mode changed from intergranular to transgranular cleavage fracture. Further addition of Al resulted in the discontinuous growth of Ni2MnAl precipitates in the alloy containing 4.2?wt.% Al and fracture occurred by void growth and coalescence, i.e. by ductile dimple rupture. The transition of the fracture behaviour of the Fe–Mn–Ni–Al alloys is discussed in relation to the conversion of the precipitates and their discontinuous precipitation behaviour at PAGBs.  相似文献   

10.
The maximum silicon content in commercial Fe–Si steels is limited to about 3.5 wt%Si, since the ductility declines sharply as this maximum is exceeded, hindering the production of thin sheets by cold/hot rolling. However, the best magnetic properties are attained at about 6.5 wt%Si, a silicon content that renders magnetostriction practically null and minimizes magnetic losses. Using spray-forming, our research group has successfully produced this type of high silicon alloy in thin sheet form by carefully controlling the many variables of the process and subsequent rolling operations. In the present study, we investigated the magnetic properties and the microstructure of spray-formed Fe–6.5 wt%Si and Fe–6.5 wt%Si–1.0 wt%Al alloys after warm rolling and heat treatment. The main cause for the brittleness of Fe–6.5 wt%Si alloy has been attributed to the B2 phase long-range ordering, which leads to premature fractures. The presence of aluminum could avoid B2 formation and improve the alloy's ductility. The binary Fe–6.5 wt% Si alloy showed the best magnetic properties, which were ascribed to a recrystallized, coarse grain size (∼500 μm; and 340 μm for the Al-containing alloy). TEM analysis showed that a well-developed B2 domain structure (about 50–300 nm in size) was formed in the binary alloy when low cooling rates are prevailing after heat treatment. This structure contributed to improve additionally the magnetic properties, but its effect was not so strong as that of the grain size. The addition of Al to the binary alloy suppressed B2 formation, as indicated by Mossbauer spectroscopy, and apparently hindered excessive grain growth, which may explain the slightly poorer magnetic properties when compared with the binary alloy.  相似文献   

11.
Fe–Pt–MgO stacked storage layer constructed by [Fe–Pt/Fe–Pt–MgO/Fe–Pt] trilayered structure was proposed for a next-generation high-density perpendicular magnetic recording medium. The Fe–Pt–MgO composite middle layer was prepared by sputtering the Fe–Pt–MgO composite-type target including relatively large MgO content of 50 vol%. The Fe–Pt(0 0 1) seed layer deposited on MgO underlayer was effective in forming the ordered fct(0 0 1) phase for the Fe–Pt–MgO composite film. The reduction of transition jitter noise and the suppression of signal overlap were observed in the stacked-type medium with the Fe–Pt–MgO middle layer of 1 nm thickness. The improvement of recording properties is attributed to the pinning effect of magnetic domain wall by the Fe–Pt–MgO composite layer inserted into the middle of pure Fe–Pt storage layer.  相似文献   

12.
Nd60Fe30Al10 ribbons has been prepared by chill-block melt-spinning with different wheel speeds from 5 to 30 m/s. Fully amorphous ribbons were obtained at wheel speeds of 25 and 30 m/s. These ribbons exhibited an unusually large anisotropy in magnetization. The effect of the magnetic anisotropy decreased with decreasing wheel speed, and nearly disappeared at the wheel speed of 5 m/s, at which the ribbon consisted of a mixture of a more stable Fe-rich amorphous phase and a crystalline Nd phase with a strong crystallographic texture.  相似文献   

13.
A microstructural study of DC-sputtered Fe93−xZr3B4Agx films on Si(0 0 1) substrates has been carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). All samples were deposited as a function of additive Ag content (x=0–6 at%), and annealed in the range of temperature, 300–600°C, for 1 h in order to obtain enhanced soft magnetic properties. Through XRD and TEM investigation, Ag-free Fe93Zr3B4 films on Si(0 0 1) substrates consisted of nano-crystalline Fe-based phases. In the presence of Ag additive element, the microstructure of as-deposited Fe93−xZr3B4Agx films consisted of a mixture of majority of Fe-based amorphous and Ag crystalline phases. In this case, additive element, Ag played a role in retarding the formation of Fe-based crystalline phases during deposition, and insoluble nano-crystalline Ag particles were dispersed in the Fe-based amorphous matrix. As the content of Ag increased, the intensity of Ag crystalline XRD peak increased. Crystallization of Fe-based amorphous phase in the matrix of Fe88Zr3B4Ag5 thin films occurred at an annealing temperature of 400°C. In the case of Fe88Zr3B4Ag5 films annealed at 500°C, a much enhanced permeability of the Fe-based alloy thin films associated with nano-crystalline phases was achieved.  相似文献   

14.
15.
Magnetostriction of amorphous Fe79Mo8Cu1B12, (Fe12Co1)79Mo8Cu1B12 and (Fe9Co1)79Mo8Cu1B12 prepared by planar flow casting was measured using a direct method. The results indicate that magnetostriction in parallel (λ)(λ) and perpendicular (λ)(λ) directions of applied magnetic field is linearly dependent on magnetic field. In order to determine the influences of chemical composition and the conditions of sample preparation the magnetostriction of pure BCC-Fe, Cu and Mo were also measured. Samples containing Co with Curie temperatures slightly above room temperatures were shown to exhibit a hybrid magnetostriction behaviour with both ferromagnetic and paramagnetic features.  相似文献   

16.
The role of deformation-induced defects and carbon addition on copper precipitation during ageing at 550?°C is investigated in high-purity Fe–Cu–B–N–C alloy samples by positron annihilation spectroscopy. Complementary small-angle neutron scattering (SANS) and hardness tests are utilized to characterize the size distribution of the Cu precipitates formed and their influence on the mechanical properties. Samples with 0 and 8% cold pre-strain are utilized to study the influence of prior tensile deformation on the precipitation kinetics of copper. The time evolution of the coincidence Doppler-broadening spectra indicates that deformation-induced defects enhance the Cu precipitation kinetics, which is confirmed by the SANS results. In the S–W plot, a clear reduction in open volume defects is accompanied by a strong increase of Cu signature during the initial stage of ageing, implying that the open volume defects (mainly dislocations) act as nucleation sites for Cu precipitation. A comparison between the precipitation behaviour of Fe–Cu, Fe–Cu–B–N and Fe–Cu–B–N–C indicates that the addition of carbon does not alter the Cu precipitation mechanism but decelerates the kinetics. Hardness results confirm that carbon counteracts the acceleration of Cu precipitation caused by the addition of B and N.  相似文献   

17.
This study involved the use of a flow circulation cell, using varying circulation rates as a room temperature process (20°C). Mössbauer and XRD analysis were conducted to ascertain whether amorphous or microcrystalline structures could be obtained at 20°C using a range of current densities. Amorphous or microcrystalline structures of Sn–Fe and Sn–Co–Fe have potentially important industrial applications for energy efficient cells, for use as high performance electrodes in lithium batteries, as environmentally acceptable corrosion resistant materials and are derived from an energy efficient environmentally friendly electrolyte process which would be acceptable as an industrial process. $^{\it 57}Fe$ and $^{\it 119}Sn$ Mössbauer investigations supported by XRD analysis confirmed that the room temperature flow circulation cell gave rise to previously unknown non-equilibrium amorphous structures which do not occur in the corresponding thermally prepared alloys as shown in the thermal equilibrium diagrams. Mössbauer analysis shows these alloys to be both amorphous and ferromagnetic. It is shown that the flow circulation cell used at 20°C based on the environmentally friendly gluconate bath reported gives amorphous based Sn–Fe and Sn–Co–Fe alloys over a useful range of current densities facilitated by using a range of circulation rates.  相似文献   

18.
Refait  Ph.  Drissi  S.  Abdelmoula  M.  Génin  J.-M. R. 《Hyperfine Interactions》2002,139(1-4):651-655
Green rust-like compounds (GRs) were discovered as natural minerals in various hydromorphic soils, where anoxic conditions allow their stability. They may control some redox processes in aquifers and participate to the transformation of various pollutants. Since Mg(II) cations are present in the fields where GRs were discovered, a partial substitution of Mg(II) to Fe(II) leading to intermediate compounds between GRs and usual Mg(II)–Fe(III) hydroxysalts is suspected. Mg(II)–Fe(II)–Fe(II) hydroxycarbonates can be obtained as intermediate oxidation products of (Mg, Fe)(OH)2 in carbonate-containing aqueous media obeying to [FeII 4(1–x)MgII 4x FeIII 2(OH)12]2+ [CO3 2– nH2O]–2. TMS spectra at 12 K are similar to those of GRs, i.e., two quadrupole doublets, one due to Fe(II) with a large isomer shift =1.29 mms–1 (with respect to -iron at room temperature) and quadrupole splitting E Q=2.76 mms–1, the other one due to Fe(III) with smaller hyperfine parameters =0.49 mms–1 and E Q=0.44 mms–1. Fe(II) ions oxidise rapidly into Fe(III) with dissolved O2. The reactivity is similar to that of Fe(II)–Fe(III) hydroxysalts GR, and thus the potential of Mg(II)–Fe(II)–Fe(III) compounds for reducing pollutants.  相似文献   

19.
We have developed a procedure for x-ray fluorescence determination of the constituent composition and thickness of two-layer Ni–Fe–Mn/Cr films deposited on Polikor, an aluminum oxide ceramic. We have calculated correction coefficients taking into account interelement interference effects in this system. We have experimentally determined the density of the materials making up the composition of the films. We have established and present the metrological characteristics of the procedure developed.  相似文献   

20.
Significant efforts have been put into the recycling of bulk Nd–Fe–B sintered magnet wastes around the world in the past decade because bulk Nd–Fe–B sintered magnet wastes are valuable secondary rare-earth resources.There are two major facts behind the efforts.First, the waste magnets contain total rare-earth content as high as more than 30 wt.%, which is higher than most natural rare-earth mines.Second, the waste magnets maintain the physical and chemical properties of the original magnets even with deterioration of the properties on surfaces due to corrosion and contamination.In this review,various techniques for recycling bulk Nd–Fe–B sintered magnet wastes, the overall properties of the recycled Nd–Fe–B sintered magnets, and the mass production of recycled magnets from the wastes are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号