首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用基于密度泛函理论的第一性原理方法,研究了本征石墨烯和掺杂石墨烯对环氧树脂的吸附行为.主要研究了四种石墨烯:本征石墨烯(P-graphene)、B掺杂的石墨烯(B-graphene)、N掺杂的石墨烯(N-graphene)和O掺杂的石墨烯(O-graphene).结果表明,O掺杂有利于降低石墨烯对环氧树脂的吸附能.从电子结构上看,O掺杂的石墨烯与环氧树脂发生轨道杂化,且二者的电荷密度明显重叠,说明O掺杂的石墨烯与环氧树脂的相容性好.因此,在环氧树脂涂层中加入O掺杂的石墨烯有望成为一种提高环氧树脂涂层机械性能和抗腐蚀性能的方法 .  相似文献   

2.
The potential difference that appears in the epoxy resin located between two grade 3 steel plates is studied. One of them is stored in epoxy resin to reach equilibrium, and the second plate is coated with an asprepared mixture of epoxy resin with a hardener. It is found that the potential difference decreases in time because of charge transfer by Fe2+ ions through epoxy resin. The luminescence and infrared absorption spectra of the epoxy adhesive on the grade 3 steel surface are recorded. An analysis of these spectra shows that Fe2+ ions penetrate into the as-prepared mixture of epoxy resin with the hardener, and interact with CN groups in the mixture, and form coordination compounds. As a result, a diffusion layer saturated by the coordination compounds forms at the interface between the steel and the adhesive.  相似文献   

3.
环氧树脂电气绝缘性能优良,但是其在脉冲功率设备中充当绝缘子时,表面容易带电且不易衰减,当表面电荷集聚到一定的程度会造成局部放电甚至发展为沿面闪络。为了提高环氧树脂的沿面闪络性能,用中心粒径为1μm的氢氧化铝(ATH)无机填料来改善环氧树脂复合材料的表面性能。分别制备了ATH填料质量分数为0%(纯环氧),20%,40%,60%,80%和100%的ATH/环氧树脂复合材料试样。用电声脉冲法研究了ATH填料对环氧树脂复合材料电荷衰减性能的影响,对比了试样直流极化场强为10kV/mm和30kV/mm的试验结果。结果表明:ATH/环氧树脂复合材料电荷的衰减常数不仅与填料的质量分数有关,而且与试样的带电量有关。  相似文献   

4.
The effective thermal conductivity κeff of seven opal + epoxy resin nanocomposite samples with 100% filling of first-order pores by epoxy resin was measured in the 100-to 300-K temperature interval. In the nanocomposite studied, the thermal conductivity of the matrix (amorphous SiO2 spheres) is larger than that of the filler material (epoxy resin). κeff(T) of the opal + epoxy resin nanocomposite at intermediate temperatures (100–300 K) is shown to behave similar to pure opal. An explanation of the observed effect is proposed.  相似文献   

5.
环氧树脂是纤维增强复合材料加工中的一种重要的胶粘剂,太赫兹时域光谱技术已成为纤维增强复合材料无损检测的有力补充手段。固化温度是环氧树脂的重要参数之一,不同的固化温度会影响环氧树脂胶的性能,因此采用太赫兹时域光谱技术分别对室温和高温下固化的环氧树脂胶的太赫兹透射光谱特性进行了系统研究,计算得到了不同温度下固化的环氧树脂胶的折射率和吸收系数,并进行了对比分析。研究表明,由于室温下固化的环氧树脂样本基本没有气泡,而高温下固化的样本存在微量气泡,气泡的存在降低了样品的密度,因此室温下固化的环氧树脂胶样品的折射率和吸收系数均大于高温下固化的样品。在同种固化条件下制备的不同样品间折射率差别较小,同时,室温下固化不同样品间的吸收系数差别亦较小,但高温下固化样品间的吸收系数在0.6~1.5 THz差别逐渐变大,这主要是因为高温下制备的不同样本间的气泡分布不均匀,即密度分布存在差异。室温和高温下固化样品的吸收系数在整体上均随着频率的增加而增加,并且没有明显的吸收峰。此外,由于法布里-珀罗干涉效应的存在,导致有些厚环氧树脂样本的能量透过率在共振峰处要远大于薄样本。该研究对纤维增强复合材料的太赫兹无损检测具有重要的研究意义。  相似文献   

6.
 在激光硬杀伤防护体系研究中,制备了鳞片石墨改性环氧树脂涂层,分析了它与辐照激光能量耦合作用规律,研究了其热烧蚀性能、隔热性能等抗激光辐照性能,并对不同参数激光辐照后该材料的损伤形貌进行宏观、微观分析,确定了损伤阈值与损伤形式。实验结果表明:石墨改性环氧树脂具有优良的抗强激光辐照性能,连续激光辐照下功率密度损伤阈值高于2 kW/cm2;高温下与激光能量耦合系数仅为10%左右,稳定热烧蚀率低至μg/J量级;具备优良的纵向隔热性能,高温下热导率在10 W·K-1·m-1以下;低功率密度激光辐照下损伤形式为轻微氧化,高功率密度激光辐照下则以汽化烧蚀为主;材料制备工艺简单,成本低廉,与被加固材料界面结合良好。  相似文献   

7.
李克训  马江将  张泽奎  马晨  贾琨  刘伟  张捷  李静  王东红 《强激光与粒子束》2019,31(10):103204-1-103204-7
基于碳纳米材料有序结构优异的结构与功能特点,研究了其在新型电磁防护材料中的应用,结合环氧树脂与碳纳米有序结构在电磁屏蔽效能和力学性能方面表现出的显著优势,论述了环氧树脂基碳纳米管复合电磁屏蔽材料和碳纳米管有序纳米结构研究,通过电磁仿真优化设计构筑三维导电网络结构,得出8~12 GHz电磁波段屏蔽效能≥82.96 dB的理想结构模型,为环氧树脂基碳纳米复合电磁屏蔽材料研究开发提供了指导,有利于该新型电磁屏蔽材料在国防、国民经济各领域的应用。  相似文献   

8.
To improve adhesion between copper and epoxy resin in printed circuit board, a roughness treatment of copper has been widely used. Nevertheless, new adhesion promoters have to be developed to face the miniaturization and sophistication of the electronic device. Self-assembled monolayers have met increasing interest in this field by using them as coupling agent between copper and the epoxy resin.This paper presents the deposition of an epoxy resin on copper modified by amine alkylthiol and dithiol monolayers and highlights the benefit brought by the monolayer in terms of adhesion.The chemical linkage between the amine SAMs and the epoxy function has been proved by the deposition on a short epoxy fragment, the 2-(4-fluorophenoxy-methyl)oxirane. The deposition of an epoxy resin mixed with amine curing agent has then been successfully achieved on amine terminated SAMs. The resulting polymer is homogeneous and well adherent on their surface, while the adhesion is lower on bare copper and not existing on methyl terminated SAMs. The formation of chemical bond Cu-S and N-epoxy is thus essential to increase the adhesion strength between copper and the polymer.  相似文献   

9.
Interfacial adhesion between carbon fiber (CF) and epoxy resin in carbon fiber-reinforced epoxy composite, which was prepared by different heating process such as semiconductor microwave (MW) device and conventional electric oven, has been evaluated quantitatively. The interfacial shear strength (IFSS) between CF and epoxy resin, which was an indicator of adhesion on the interface, was measured by a single fiber fragmentation test. The single fiber fragmentation test showed that the IFSSs of the prepared specimens were different by heating methods. In the case of MW process, the curing reaction of epoxy resin on the CF interface would be progressed preferentially due to the selective heating of CF, resulting that the IFSSs of specimens prepared by MW irradiation were increased by enhancing the output power of MW. However, the IFSSs of the specimens were decreased by excessively high output power because the matrix resin on the CF interface was thermally degraded. As results, by optimizing the MW conditions of output power and irradiation time, the IFSS of the sample cured by MW was increased by 21% as compared to oven-heated one. It was found that the interfacial adhesion between CF and epoxy resin would be improved by the MW-assisted curing reaction on the surface of CF.  相似文献   

10.
等离子体对材料的改性效果随放置时间会有所减弱,即表现出一定的时效性,限制了等离子体改性技术的进一步发展。为了探究等离子体介质阻挡放电(DBD)氟化改性环氧树脂的时效性,利用等离子体介质阻挡放电实现了环氧树脂表面氟化改性,并利用扫描电镜(SEM)、表面轮廓仪、X射线光电子能谱分析(XPS)、接触角测试仪、高阻计和闪络电压、表面电位测试系统对改性前和改性后放置在25 ℃老化箱中0~30 d的环氧树脂表面进行了物理形貌和化学组分的表征以及电气性能的测试。测试结果表明,DBD氟化改性实现了氟元素在环氧树脂表面接枝,这使得环氧树脂表面能降低,表面电阻率减小,陷阱能级变浅,从而加快了表面电位衰减速度,进而提升了沿面闪络电压。同时,等离子体DBD氟化改性环氧树脂表现出一定的时效性,放置30 d后,氟元素含量减少,表面能增大,表面电位衰减速度略有减慢,闪络电压也有所下降,但仍高于未处理的试样。  相似文献   

11.
采用密度泛函m062x的方法在6-31g(d)基组上对双酚A型环氧树脂分子进行优化得到了它的稳定结构,并且研究了不同外电场(0-0.013 a.u., 1 a.u.=5.142×10~(11) V/m)作用下双酚A型环氧树脂分子的分子结构、电偶极矩和分子总能量,偶极矩、极化率、前线轨道的能级和成分,原子之间的键能和红外光谱的变化.研究表明:随着外加电场的增大,双酚A型环氧树脂分子从倒V型结构逐渐变成线性结构,总能量降低,偶极矩和极化率都升高,且双酚A型环氧树脂分子的稳定性随着外加电场的增大而降低;最高占据轨道能级随着外加电场的增大而增大,沿逆电场方向分子链端表现出亲核反应活性,最低空轨道能级随着外加电场的增大而减小,沿电场方向分子链端表现出亲电反应;位于分子两端环氧基团上的C-C,C-O容易发生断裂,进而破环了双酚A型环氧树脂分子的稳定性;分子红外光谱在高频区的吸收峰出现了明显的红移现象.  相似文献   

12.
The preparation, crystallization behavior, and fiber structure and properties of ultrahigh molecular weight polyethylene (UHMWPE) epoxy resin composite fiber were studied by means of differential scanning calorimeter (DSC), X‐ray diffraction (XRD), Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and tensile testing. The morphology showed a different behavior from pure polyethylene (PE) fiber. The fiber mechanical properties, creep behavior, and thermal properties of UHMWPE fiber can be improved by adding epoxy resin. It's believed that the epoxy can serve as a physical cross‐linking agent to limit the motion or migration of PE molecules and consequently improve the fiber creep property. However, when the content of epoxy resin is higher than 5 wt%, all of the behavior and properties deteriorate.  相似文献   

13.
《Composite Interfaces》2013,20(2-3):189-203
The shortcoming of epoxy resin is the brittleness of this material though it shows excellent chemical, mechanical and electric properties. To improve fracture toughness of epoxy resin, rubbery materials that show high values in toughness but low values in glass transition temperature and mechanical properties, and thermoplastics that show high values in thermal and mechanical properties but relatively small increase in toughness were blended with epoxy. ATPEI-CTBN-ATPEI triblock copolymer, which consists of rubbery and thermoplastics blocks, was synthesized, and the triblock copolymer was blended with epoxy resin. The effects of parameters such as contents of the triblock copolymer, cure temperature, and contents of catalyst on the morphology of the blend systems were studied. From 30 wt% of the contents of the triblock copolymer, fracture toughness and impact energy absorption of the blend systems were increased significantly. This was due to the generation of nodular morphology in the system.  相似文献   

14.
The purpose of this study was to compare the level of immunogold labeling of deplasticized acrylic sections and deplasticized epoxy sections. Pure protein gels of IgG, albumin and thyroglobulin were produced by glutaraldehyde fixation and embedded in non-crosslinked acrylic resin (Technovit 9100) and epoxy resin (Epon 812), respectively. Ultrathin sections of acrylic and epoxy resin were separately deplasticized in 2-methoxyethyl acetate (MEA) and sodium ethoxide. Quantitative immunogold labeling was performed with anti-IgG, anti-albumin and anti-thyroglobulin antibodies on sections of the corresponding protein gels. For all antibodies tested, the intensity of labeling for deplasticized acrylic sections was significantly higher (two to four times) than for the corresponding deplasticized epoxy sections. The results fit with a theoretically deduced relation: the quotient of the labeling of two deplasticized sections of different resins is equivalent to the square root of the quotient of the labeling of the similar sections not exposed to any kind of pre-treatment. The practical significance of the results is that immunolabeling of deplasticized non-crosslinked acrylic resin results in more intense immunogold labeling than deplasticized epoxy sections. Deplasticizing is most useful when the requirements for ultrastructural preservation according to conventional criteria are moderate. Our theoretically deduced results also indicate that deplasticized Technovit (or other non-crosslinked acrylic resins) sections will be significantly better suited for immunolabeling at the light microscopic level than deplasticized epoxy sections.  相似文献   

15.
With the help of holographic interferometry a study is conducted on the compatibility of SMA (shape memory alloy) and epoxy resin composite material. The paper gives experiment results and analysis which show that after coupling SMA with the composite material, the flexural rigidity of composite material is somewhat reinforced. Under certain conditions, SMA and the epoxy resin composite material are compatible.  相似文献   

16.
With the help of holographic interferometry a study is conducted on the compatibility of SMA (shape memory alloy) and epoxy resin composite material. The paper gives experiment results and analysis which show that after coupling SMA with the composite material, the flexural rigidity of composite material is somewhat reinforced. Under certain conditions, SMA and the epoxy resin composite material are compatible.  相似文献   

17.
Effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resin droplets. Characteristics of these capsules were studied by 3D measuring laser microscope, particle size analyzer, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) to investigate their surface morphology, size distribution, chemical structure and thermal stability, respectively. The results indicate that microcapsules containing epoxy resins can be synthesized successfully. The size is around 100 μm. The rough outer surface of microcapsule is composed of agglomerated urea-formaldehyde nanoparticles. The size and surface morphology of microcapsule can be controlled by selecting different processing parameters. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200 °C. The model system of self-healing coating consists of epoxy resin matrix, 10 wt% microencapsulated healing agent, 2 wt% catalyst solution. The self-healing function of this coating system is evaluated through self-healing testing of damaged and healed coated steel samples.  相似文献   

18.
A novel polyhedral oligomeric silsesquioxane containing phosphorus and boron (PB-POSS) was synthesized. The resulting PB-POSS and multiwalled carbon nanotubes (MWCNTs) were incorporated into an epoxy resin (EP) to prepare PB-POSS/MWCNTs/EP composites through a solution mixing method. The synergistic effect of MWCNTs and PB-POSS on the thermal and mechanical properties and the flame retardancy of these flame retardant composites were studied. The experimental results showed that the introduction of PB-POSS or MWCNTs further improved the LOI values of the epoxy resin, and the highest LOI value (32.8%) was obtained for the formulation containing 14.6 wt% PB-POSS and 0.4 wt% MWCNTs. In addition, the incorporation of both PB-POSS and MWCNTs significantly improved the thermal and mechanical properties of the composites. The mechanical properties of composites containing 14.7 wt% PB-POSS and 0.3 wt% MWCNTs reached the maximum. The impact strength and flexural strength increased by 42% and 7%, respectively, compared to the neat epoxy resin. Thus, a combination of PB-POSS and MWCNTs in the appropriate ratio could effectively enhance the thermal and mechanical properties and the flame retardancy of the epoxy resin matrix.  相似文献   

19.
《Composite Interfaces》2013,20(5):443-453
Three different temperature schemes were applied on carbon fiber/epoxy composite to elucidate the effect on interfacial shear strength (IFSS) and inter-laminar shear strength (ILSS). It showed that carbon fiber/epoxy IFSS was significantly influenced by the processing temperature, while ILSS was only slightly changed. Moreover, the mechanical properties revealed no necessary relationship between the micro- and macro-interfacial strengths with the properties of epoxy matrix. Among all the temperature schemes, Pro2 (the one-platform curing scheme with relatively rapid heating rate) produced highest IFSS and ILSS. Fourier transform infrared spectroscopy analysis demonstrated that the sizing agent can chemically react itself and also react with epoxy resin at temperature 180?°C. The resin rheological data showed that different temperature schemes can considerably impact diffusion behavior of the resin molecules. Hence, the highest interfacial strengths for Pro2 scheme were ascribed to large extent of chemical reactions and good inter-diffusion between components, at the interface region.  相似文献   

20.
PZT/epoxy resin composites of combined 0–3 and 1–3 connectivities were fabricated, for the first time, using suction, dice and fill techniques. Two types of composites (PZT(m)/epoxy resin and PZT(sp)/epoxy resin) were produced using PZT powders prepared by mixed oxide and spray-drying methods. Physical, mechanical, dielectric and piezoelectric properties of the composites were examined. Generally, overall results between the two composites were found to be very similar (volumetric changes ∼34–37%, d33∼20.2–25.3 pC/N, Kp∼0.54–0.61). Higher density was found in PZT(sp)/epoxy resin, however, due to better packing of particles. Moreover, both PZT/epoxy resin composites exhibited very low acoustic impedance (Z∼4.12–4.84 Mrayls), which is very close to that of human tissue and water. Therefore, these new composites may be suitable for use in medical applications. PACS 81.05.Qk; 81.05.Zx; 77.87.-s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号