首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eleven doubly protonated peptides with a residue homologous to lysine were investigated by electron capture dissociation mass spectrometry (ECD-MS). Lysine homologues provide the unique opportunity to examine the ECD fragmentation behavior by allowing us to vary the length of the lysine side chain, with minimal structural change. The lysine homologue has a primary amine side chain with a length that successively decreases by one methylene (CH(2)) unit from the --CH(2)CH(2)CH(2)CH(2)NH(2) of lysine and the accompanying decrease of its proton affinities: lysine (K), 1006.5(+/-7.2) kJ/mol; ornithine (K(*)), 1001.1(+/-6.6) kJ/mol; 2,4-diaminobutanoic acid (K(**)), 975.8(+/-7.4) kJ/mol; 2,3-diaminopropanoic acid (K(***)), 950.2(+/-7.2) kJ/mol. In general, the lysine-homologous peptides exhibited overall ECD fragmentation patterns similar to that of the lysine-containing peptides in terms of the locations, abundances, and ion types of products, such as yielding c(+) and z(+.) ions as the dominant product ions. However, a close inspection of product ion mass spectra showed that ECD-MS for the alanine-rich peptides with an ornithinyl or 2,4-diaminobutanoyl residue gave rise to b ions, while the lysinyl-residue-containing peptides did not, in most cases, produce any b ions. The peptide selectivity in the generation of b(+) ions could be understood from within the framework of the mobile proton model in ECD-MS, previously proposed by Cooper (Ref. 29). The exact mass analysis of the resultant b ions reveals that these b ions are not radical species but rather the cationic species with R-CO(+) structure (or protonated oxozalone ion), that is, b(+) ions. The absence of [M+2H](+.) species in the ECD mass spectra and the selective b(+)-ion formation are evidence that the peptides underwent H-atom loss upon electron capture, and then the resulting reduced species dissociated following typical MS/MS fragmentation pathways. This explanation was further supported by extensive b(+) ions generated in the ECD of alanine-based peptides with extended conformations.  相似文献   

2.
This study has elucidated the fragmentation pathway for deprotonated isoflavones in electrospray ionization using MS(n) ion trap mass spectrometry and triple quadrupole mass spectrometry. Genistein-d(4) and daidzein-d(3) were used as references for the clarification of fragment structures. To confirm the relationship between precursor and product ions, some fragments were traced from MS(2) to MS(5). The previous literature for the structurally related flavones and flavanones located the loss of ketene (C(2)H(2)O) to ring C, whereas the present fragmentation study for isoflavones has shown that the loss of ketene occurs at ring A. In the further fragmentation of the [M-H-CH(3)](-*) radical anion of methoxylated isoflavones, loss of a hydrogen atom was commonly found. [M-H-CH(3)-CO-B-ring](-) is a characteristic fragment ion of glycitein and can be used to differentiate glycitein from its isomers. Neutral losses of CO and CO(2) were prominent in the fragmentation of deprotonated anions in ion trap mass spectrometry, whereas recyclization cleavage accounted for a very small proportion. In comparison with triple quadrupole mass spectrometry, ion trap MS(n) mass spectrometry has the advantage of better elucidation of the relationship between precursor and product ions.  相似文献   

3.
It has been determined experimentally that a(3) ions are generally not observed in the tandem mass spectroscopic (MS/MS) spectra of b(3) ions. This is in contrast to other b(n) ions, which often have the corresponding a(n) ion as the base peak in their MS/MS spectra. Although this might suggest a different structure for b(3) ions compared to that of other b(n) ions, theoretical calculations indicate the conventional oxazolone structure to be the lowest energy structure for the b(3) ion of AAAAR, as it is for other b(n) ions of this peptide. However, it has been determined theoretically that the a(3) ion is lower in energy than other a(n) ions, relative to the corresponding b ions. Furthermore, the a(3) --> b(2) transition structure (TS) is lower in energy than other a(n) --> b(n-1) TSs of AAAAR, compared with the corresponding b ions. Consequently, it is suggested that the b(3) ion does fragment to the a(3) ion, but that the a(3) ion then immediately fragments (to b(2) and a(3)) because of the excess internal energy arising from its relatively low energy and the facile a(3) --> b(2) reaction. That is why a(3) ions are not observed in the MS/MS spectra of b(3) ions.  相似文献   

4.
Three gaseous acyclic distonic acylium ions: *CH2-CH2-C+=O, *CH2-CH2-CH2-C+=O, and *CH2=C(CH2)-C+=O, are found to display dual free radical and acylium ion reactivity; with appropriate neutrals, they react selectively either as free radicals with inert charge sites, or (and more pronouncedly) as acylium ions with inert radical sites. The free radical reactivity of the ions is demonstrated via the Kenttamaa reaction: CH3S* abstraction with the spin trap dimethyl disulfide; their ion reactivity by two reactions most characteristic of acylium ions: transacetalization with 2-methyl-1,3-dioxolane and the gas-phase Meerwein reaction, that is, expansion of the three-membered epoxide ring of epichlorohydrin to the five-membered 1,3-dioxolanylium ion ring. In "one-pot" reactions with gaseous mixtures of epichlorohydrin and dimethyl disulfide, the ions react selectively at either site, but more readily at the acylium charge site, to form the two mono-derivatized ions. Further reaction at either the remaining free radical or acylium charge site forms a single bi-derivatized ion as the final product. Becke3LYP/6-31G(d) calculations predict the reactions at the acylium charge sites of the three distonic ions to be highly exothermic, and both the "hot" transacetalization and epoxide ring expansion products of *CH2-CH2-CH2-C+=O to dissociate rapidly by H2C=CH2 loss in overall exothermic processes. The calculations also predict highly spatially separate odd spin and charge sites for the novel cyclic distonic ketal ions formed by the reactions at the acylium charge sites.  相似文献   

5.
An electron injection system based on an indirectly heated ring-shaped dispenser cathode has been developed and installed in a 7 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This new hardware design allows high-rate electron capture dissociation (ECD) to be carried out by a hollow electron beam coaxial with the ion cyclotron resonance (ICR) trap. Infrared multiphoton dissociation (IRMPD) can also be performed with an on-axis IR-laser beam passing through a hole at the centre of the dispenser cathode. Electron and photon irradiation times of the order of 100 ms are required for efficient ECD and IRMPD, respectively. As ECD and IRMPD generate fragments of different types (mostly c, z and b, y, respectively), complementary structural information that improves the characterization of peptides and proteins by FTICR mass spectrometry can be obtained. The developed technique enables the consecutive or simultaneous use of the ECD and IRMPD methods within a single FTICR experimental sequence and on the same ensemble of trapped ions in multistage tandem (MS/MS/MS or MS(n)) mass spectrometry. Flexible changing between ECD and IRMPD should present advantages for the analysis of protein digests separated by liquid chromatography prior to FTICRMS. Furthermore, ion activation by either electron or laser irradiation prior to, as well as after, dissociation by IRMPD or ECD increases the efficiency of ion fragmentation, including the w-type fragment ion formation, and improves sequencing of peptides with multiple disulfide bridges. The developed instrumental configuration is essential for combined ECD and IRMPD on FTICR mass spectrometers with limited access into the ICR trap.  相似文献   

6.
We have examined the multi-stage collision induced dissociation (CID) of metal cationized leucine enkephalin, leucine enkephalin amide, and the N-acetylated versions of the peptides using ion trap mass spectrometry. In accord with earlier studies, the most prominent species observed during the multi-stage CID of alkali metal cationized leucine enkephalin are the [b(n) + 17 + Cat]+ ions. At higher CID stages (i.e. >MS(4)), however, dissociation of the [b2 + 17 + Cat]+ ion, a cationized dipeptide, results in the production of [a(n) -1 + Cat]+ species. The multi-stage CID of Ag+ cationized leucine enkephalin can be initiated with either the [b(n) -1 + Ag]+ or [b(n) + 17 + Ag]+ ions produced at the MS/MS stage. For the former, sequential CID stages cause, in general, the loss of CO, and then the loss of the imine of the C-terminal amino acid, to reveal the amino acid sequence. Similar to the alkali cationized species, CID of [b2 -1 + Ag]+ produces prominent [a(n) -1 + Ag]+ ions. The multi-stage CID of argentinated peptides is reminiscent of fragmentation observed for protonated peptides, in that a series of (b(n)) and (a(n)) type ions are generated in sequential CID stages. The Ag+ cation is similar to the alkali metals, however, in that the [b(n) + 17 + Ag]+ product is produced at the MS/MS and MS3 stages, and that sequential CID stages cause the elimination of amino acid residues primarily from the C-terminus. We found that N-acetylation of the peptide significantly influenced the fragmentation pathways observed, in particular by promoting the formation of more easily interpreted (in the context of unambiguous sequence determination) dissociation spectra from the [b2 + 17 + Li]+, [b2 + 17 + Na]+ and [b2 -1 + Ag]+ precursor ions. Our results suggest, therefore, that N-acetylation may improve the efficacy of multi-stage CID experiments for C-terminal peptide sequencing in the gas phase. For leucine enkephalin amide, only the multi-stage CID of the argentinated peptide allowed the complete amino acid sequence to be determined from the C-terminal side.  相似文献   

7.
Electron capture dissociation (ECD) was studied with doubly charged dipeptide ions that were tagged with fixed-charge tris-(2,4,6-trimethoxyphenyl)phosphonium-methylenecarboxamido (TMPP-ac) groups. Dipeptides GK, KG, AK, KA, and GR were each selectively tagged with one TMPP-ac group at the N-terminal amino group while the other charge was introduced by protonation at the lysine or arginine side-chain groups to give (TMPP-ac-peptide + H)(2+) ions by electrospray ionization. Doubly tagged peptide derivatives were also prepared from GK, KG, AK, and KA in which the fixed-charge TMPP-ac groups were attached to the N-terminal and lysine side-chain amino groups to give (TMPP-ac-peptide-ac-TMPP)(2+) dications by electrospray. ECD of (TMPP-ac-peptide + H)(2+) resulted in 72% to 84% conversion to singly charged dissociation products while no intact charge-reduced (TMPP-ac-dipeptide + H)(+) ions were detected. The dissociations involved loss of H, formation of (TMPP + H)(+), and N-C(alpha) bond cleavages giving TMPP-CH(2)CONH(2)(+) (c(0)) and c(1) fragments. In contrast, ECD of (TMPP-ac-peptide-ac-TMPP)(2+) resulted in 31% to 40% conversion to dissociation products due to loss of neutral TMPP molecules and 2,4,6-trimethoxyphenyl radicals. No peptide backbone cleavages were observed for the doubly tagged peptide ions. Ab initio and density functional theory calculations for (Ph(3)P-ac-GK + H)(2+) and (H(3)P-ac-GK + H)(2+) analogs indicated that the doubly charged ions contained the lysine side-chain NH(3)(+) group internally solvated by the COOH group. The distance between the charge-carrying phosphonium and ammonium atoms was calculated to be 13.1-13.2 A in the most stable dication conformers. The intrinsic recombination energies of the TMPP(+)-ac and (GK + H)(+) moieties, 2.7 and 3.15 eV, respectively, indicated that upon electron capture the ground electronic states of the (TMPP-ac-peptide + H)(+*) ions retained the charge in the TMPP group. Ground electronic state (TMPP-ac-GK + H)(+*) ions were calculated to spontaneously isomerize by lysine H-atom transfer to the COOH group to form dihydroxycarbinyl radical intermediates with the retention of the charged TMPP group. These can trigger cleavages of the adjacent N-C(alpha) bonds to give rise to the c(1) fragment ions. However, the calculated transition-state energies for GK and GGK models suggested that the ground-state potential energy surface was not favorable for the formation of the abundant c(0) fragment ions. This pointed to the involvement of excited electronic states according to the Utah-Washington mechanism of ECD.  相似文献   

8.
The formation of linoleic acid radical species under the oxidative conditions of the Fenton reaction (using hydrogen peroxide and Fe (II)) was monitored by FAB-MS and ES-MS using the spin trap 5,5-dimethyl-1-pyrrolidine-N-oxide, DMPO. Both the FAB and ES mass spectra were very similar and showed the presence of ions corresponding to carbon- and oxygen centered spin adducts (DMPO/L*, DMPO/LO*, and DMPO/LOO*). Cyclic structures, formed between the DMPO oxygen and the neighboring carbon of the fatty acid, were also observed. Electrospray tandem mass spectrometry of these ions was performed to confirm the proposed structure of these adducts. All MS/MS spectra showed an ion at m/z 114, correspondent to the [DMPO + H]+, and a fragment ion due to loss of DMPO (loss of 113 Da), confirming that they are DMPO adducts. ES-MS/MS spectra of alkoxyl radical adducts (DMPO/LO*) showed an additional ion at m/z 130 [DMPO - O + H]+, while ES MS/MS of peroxyl radical adducts (DMPO/LOO*) showed a fragment ion at m/z 146 [DMPO - OO + H]+, confirming both structures. Other fragment ions were observed, such as alkyl acylium radical ions, formed by cleavage of the alkyl chain after loss of water and the DMPO molecule. The identification of fragment ions observed in the MS/MS spectra of the different DMPO adducts suggests the occurrence of structural isomers containing the DMPO moiety both at C9 and C13. The use of ES tandem mass spectrometry, associated with spin trapping experiments, has been shown to be a valuable tool for the structural characterization of carbon and oxygen-centered spin adducts of lipid radicals.  相似文献   

9.
First results are reported on the application of ECD in analysis of 2+ and 3+ ions of stereoisomers of Trp-cage (NLYIQWLKDGGPSSGRPPPS), the smallest and fastest-folding protein, which exhibits a tightly folded tertiary structure in solution. The chiral recognition based on the ratios of the abundances of z(18) and z(19) fragments in ECD of 2+ ions was excellent even for a single amino acid (Tyr) D-substitution (R(chiral) = 8.6). The chiral effect decreased with an increase of temperature at the electrospray ion source, as well as at a higher degree of ionization, 3+ ions (R(chiral) = 1.5). A general approach is suggested for charge localization in n+ ions by analysis of ECD mass spectra of (n + 1)+ ions. Application of this approach to 3+ Trp-cage ions revealed the protonation probability order in 2+ ions: Arg(16) > Gln(5) > approximately N-terminus. The ECD results for native form of the 2+ ions favor the preservation of the solution-phase tertiary structure, and chiral recognition through the interaction between the charges and the neutral bond network. Conversely, ECD of 3+ ions supports the dominance of ionic hydrogen bonding which determines a different gas-phase structure than found in solution. Vibrational activation of 2+ ions indicated greater stability of the native form, but the fragmentation patterns did not provide stereoisomer differentiation, thus underlying the special position of ECD among other MS/MS fragmentation techniques. Further ECD studies should yield more structural information as well as quantitative single-amino acid D/L content measurements in proteins.  相似文献   

10.
Divalent metal complexes of phosphocholines, [Metal(II)(L)(n)](2+) (where Metal=Cu(2+), Co(2+), Mg(2+), and Ca(2+), L=1,2-dihexanoyl-sn-glycero-3-phosphocholine [6:0/6:0GPCho] and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine [16:0/18:1GPCho] and n=2-5), were formed upon electrospray ionization mass spectrometry (ESI/MS) of 8 mM solution of phosphocholine (L) with 4 mM metal salt (Metal). The electron capture dissociation (ECD) reactions of these [Metal(II)(L)(n)](2+) complexes were examined via Fourier-transform ion-cyclotron resonance mass spectrometry. A rich and complex chemistry was observed, including charge reduction and fragmentation involving losses of a methyl radical, trimethylamine, and the acyl chains. The predominant reaction channel was dependent on the size (n) of the complex, the metal and ligand used, and the size of the acyl chain. Thus charge reduction dominates the ECD spectra of the larger phosphocholine, 16:0/18:1GPCho, but is largely absent in the smaller 6:0/6:0GPCho. For complexes of 16:0/18:1GPCho, n=4-5, fragmentation from the head group mainly occurs via loss of the methyl radical and trimethylamine. At n=3, the relative abundance of fragments due to loss of acyl chain radicals increases. The abundances of ions arising from these radical losses increase further for the n=2 complexes, thereby providing information on the composition and position of the 16:0 and 18:1 acyl groups. Thus ECD of metal complexes provides structurally useful information on the phosphocholine, including the nature of the head group, the acyl chains, and the positions of the acyl chains.  相似文献   

11.
The pseudo-tetrapeptide designated here as RGD (N-ethyl-N-[1-oxo-4-(4-piperidinyl) butyl] glycyl-L-alpha- aspartyl-3-cyclohexyl-L-alaninamide) and its isomer with beta-aspartic acid rather than alpha-aspartic acid were examined using electrospray ionization (ESI) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). RGD has potential as a thrombosis inhibitor and the isomer, designated here as isopeptide, is an inactive instability product; hence, means were sought to distinguish the two. Both isomers give a protonated parent on ESI and fragments typical of peptides on sustained off resonance irradiation collision-induced decomposition (SORI-CID). Cleavage at the aspartic acid (b(3)) is the dominant process in both isomers, although a significant b(2) and smaller a(2)" and c(2)" peaks are also observed. More distinctive are peaks observed at b(3)-H(2)O, b(3)-(CO + CO(2)) and, only in the case of the RGD, b(3) - (H(2)O + CO). SORI CID on the b(3) ion indicates that, of these distinctive peaks, only the b(3)-(CO + CO(2)) comes from decomposition of the b(3) ion. On this basis, a mechanism is suggested for b(3) formation, involving proton transfer from a back-bone carbonyl to the aspartic acid side-chain carboxyl group. Such an intramolecular proton transfer involves rings of different sizes for the two isomers, providing a basis for the different SORI energy dependences. A mechanism suggested for the formation of the b(3)-H(2)O fragments also involves proton transfer to the aspartic acid side chain carboxyl group. This leads to concomitant H(2)O loss and amide bond cleavage, giving the b(3)-H(2)O ions with ketene moieties resulting from the water loss. According to the suggested mechanism, the observed loss of CO (verified by SORI-CID on the b(3)- H(2)O ion) from the RGD b(3)-H(2)O peak results in a secondary carbocation stabilized by an adjacent nitrogen. The unobserved loss of CO from the b(3)-H(2)O ion, formed by the suggested mechanism from the isopeptide, would give an unstable primary carbocation lacking a neighboring nitrogen. The mechanism, thus, only rationalizes the observation of a b(3)-(H(2)O + CO) fragment in RGD and not in the isopeptide. The isomers can be distinguished on the basis of this unique peak or on the basis of the different SORI energy dependence of the formation of the b(3) ions.  相似文献   

12.
Protonated amino acids and derivatives RCH(NH2)C(+O)X · H+ (X = OH, NH2, OCH3) do not form stable acylium ions on loss of HX, but rather the acylium ion eliminates CO to form the immonium ion RCH = NH 2 + . By contrast, protonated dipeptide derivatives H2NCH(R)C(+O)NHCH(R′)C(+O)X · H+ [X = OH, OCH3, NH2, NHCH(R″)COOH] form stable B2 ions by elimination of HX. These B2 ions fragment on the metastable ion time scale by elimination of CO with substantial kinetic energy release (T 1/2 = 0.3–0.5 eV). Similarly, protonated N-acetyl amino acid derivatives CH3C(+O)NHCH(R′)C(+O)X · H+ [X = OH, OCH3, NH2, NHCH(R″)COOH] form stable B ions by loss of HX. These B ions also fragment unimolecularly by loss of CO with T 1/2 values of ~ 0.5 eV. These large kinetic energy releases indicate that a stable configuration of the B ions fragments by way of activation to a reacting configuration that is higher in energy than the products, and some of the fragmentation exothermicity of the final step is partitioned into kinetic energy of the separating fragments. We conclude that the stable configuration is a protonated oxazolone, which is formed by interaction of the developing charge (as HX is lost) with the N-terminus carbonyl group and that the reacting configuration is the acyclic acylium ion. This conclusion is supported by the similar fragmentation behavior of protonated 2-phenyl-5-oxazolone and the B ion derived by loss of H-Gly-OH from protonated C6H5C(+O)-Gly-Gly-OH. In addition, ab initio calculations on the simplest B ion, nominally HC(+O)NHCH2CO+, show that the lowest energy structure is the protonated oxazolone. The acyclic acylium isomer is 1.49 eV higher in energy than the protonated oxazolone and 0.88 eV higher in energy than the fragmentation products, HC(+O)N+H = CH2 + CO, which is consistent with the kinetic energy releases measured.  相似文献   

13.
The [M - H]- ions of a variety of di- to pentapeptides containing H or alkyl side chains have been prepared by electrospray ionization and low-energy collision-induced dissociation (CID) of the deprotonated species carried out in the interface region between the atmospheric pressure source and the quadrupole mass analyzer. Using the nomenclature applied to the fragmentation of protonated peptides, deprotonated dipeptides fragment to give a2 ions (CO2 loss) and y1 ions, where the y1 ion has two fewer hydrogens than the y"1 ions formed from protonated peptides. Deprotonated tri- and tetrapeptides fragment to give primarily y1, c1, and "b2 ions, where the "b2 ion has two fewer hydrogens than the b2 ion observed for protonated peptides. More minor yields of y2, c2, and a2 ions also are observed. The a ion formed by loss of CO2 from the [M - H]- ion shows loss of the N-terminal residue for tripeptides and sequential loss of two amino acid residues from the N-terminus for tetrapeptides. The formation of c(n) ions and the sequential loss of N-terminus residues from the [M - H - CO2]- ion serves to sequence the peptide from the N-terminus, whereas the formation of y(n) ions serves to sequence the peptide from the C-terminus. It is concluded that low-energy CID of deprotonated peptides provides as much (or more) sequence information as does CID of protonated peptides, at least for those peptides containing H or alkyl side chains. Mechanistic aspects of the fragmentation reactions observed are discussed.  相似文献   

14.
The fragmentation reactions of protonated oligoalanines (trialanine, tetraalanine and pentaalanine) and the fragments present in the electrospray ionization (ESI) mass spectrum of polyalanine have been studied by collisionally activated dissociation (CAD) mass spectrometry (MS(2) and MS(3) experiments). The MS(n) experiments provided strong evidence that the m/z 71n+1 ion series in the ESI mass spectrum of polyalanine is a b(n) series. These ions are formed via the b(n) -y(m) pathway of amide bond cleavage, which results in the formation of a proton-bound complex of an oxazolone and a peptide/amino acid. Also, the MS(2) spectra of the b(n) series from polyalanine revealed that the chain length of b(n) ions influences significantly the dissociations taking place. For example, b(n) ions start losing H(2)O at n ≥5 and the losses of CO and CO+NH(3) decrease in intensity from b(2) to b(15). The elimination of H(2)O+NH(3) and the elimination of 61 mass (HN=C=O+H(2)O) commence with b(6); their abundances initially increase up to ~ b(8)-b(9) and then gradually decrease until b(15) (largest fragment studied). The tandem mass spectrometry experiments help to elucidate the dissociation mechanisms of the observed structures of biopolymer fragments.  相似文献   

15.
Product ions obtained by tandem mass spectrometry (MS/MS) are quite effective for the amino acid sequencing of linear peptides. However, in the case of cyclic peptides, the fragmentation pattern is complicated because the cleavages occur randomly and product ions are generated as a(n), b(n), c(n), x(n), y(n) and z(n) series ions; therefore, the authors have never obtained sufficient sequence information. In order to overcome this problem, we applied ion trap liquid chromatography/multi-stage mass spectrometry (LC/MS(n)) and characterized the product ions obtained from anabaenopeptins and aeruginopeptins as the cyclic peptides. For the anabaenopeptins, MS(2) analysis did not provide sufficient sequence information on the cyclic structure, and MS(3) analysis was applied to sequence the constituent amino acids. Diagnostic product ions were obtained by the MS(3) analysis and were quite effective for obtaining the sequence information of the constituent amino acids. MS(2) analysis was, however, sufficient to obtain the sequence information of the aeruginopeptins. In both cases, the resulting product ions obtained from the cyclic structures were formed by the two-bond fission mechanism of the precursor ion, in which an initial fission of the cyclic structure to a linear one and subsequent fission(s) at the peptide bonds are included. The fragmentations were similar for the structurally related compounds, indicating that the cleavages occurred at definite peptide bonds. In addition, the resulting product ions are generated as b(n) series ions and the mass difference facilitates the amino acid sequencing. Thus, ion trap LC/MS(n) provides sequence information, and the resulting product ions are reproducible among the structurally related compounds and reliable for the sequencing of the constituent amino acids of the cyclic structure.  相似文献   

16.
Eighteen different triterpene saponins isolated from Polygala tenuifolia were investigated by electrospray ionization ion trap multiple-stage mass spectrometry (ESI-ITMS(n)) in positive and negative ion modes. MS(1)-MS(3)/MS(4) spectra of the both modes were analyzed, and they all gave fragments in line and shared common fragmentation patterns. Key fragments from MS(n) spectra of both the modes and their proposed fragmentation pathways were constructed with examples illustrated for the formation of characteristic fragments in the saponins. Two special fragmentation patterns were proposed: (1) the formation of fragments by cleavage of CH(2)O from Delta(12)-14alpha-CH(2)OH of the oleanene-type saponin aglycone in both positive and negative MS(n) (n > or = 2) modes; (2) the occurrence of fragments by cleavage of CO(2) and 3-glucose as the characteristic structure feature of 23-COOH at the oleanene-type saponin aglycones coupled with 3-Glc substitutes in the negative MS(n) (n > or = 2) modes. Peak intensities in MS(n) spectra were also correlated with structural features and fragmentation preferences of the investigated saponins, which are discussed in detail. In general, fragments formed predominantly by cleavages of glycosidic bonds in the positive mode, while selective cleavages of acyl bonds preceded that of glycosidic bonds in negative MS(n) (n > or = 2) mode, both of which could well be applied to the structural analysis of these saponins. Interpretation of MS(n) spectra presented here provided diagnostic key fragment ions important for the structural elucidation of saponins in P.tenuifolia.  相似文献   

17.
18.
We decoupled electron-transfer dissociation (ETD) and collision-induced dissociation of charge-reduced species (CRCID) events to probe the lifetimes of intermediate radical species in ETD-based ion trap tandem mass spectrometry of peptides. Short-lived intermediates formed upon electron transfer require less energy for product ion formation and appear in regular ETD mass spectra, whereas long-lived intermediates require additional vibrational energy and yield product ions as a function of CRCID amplitude. The observed dependencies complement the results obtained by double-resonance electron-capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ECD in a cryogenic ICR trap. Compared with ECD FT-ICR MS, ion trap MS offers lower precursor ion internal energy conditions, leading to more abundant charge-reduced radical intermediates and larger variation of product ion abundance as a function of vibrational post-activation amplitude. In many cases decoupled CRCID after ETD exhibits abundant radical c-type and even-electron z-type ions, in striking contrast to predominantly even-electron c-type and radical z-type ions in ECD FT-ICR MS and especially activated ion-ECD, thus providing a new insight into the fundamentals of ECD/ETD.  相似文献   

19.
We report electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) of doubly protonated and protonated/alkali metal ionized oligodeoxynucleotides. Mass spectra following ECD of the homodeoxynucleotides polydC, polydG, and polydA contain w or d "sequence" ions. For polydC and polydA, the observed fragments are even-electron ions, whereas radical w/d ions are observed for polydG. Base loss is seen for polydG and polydA but is a minor fragmentation pathway in ECD of polydC. We also observe fragment ions corresponding to w/d plus water in the spectra of polydC and d(GCATGC). Although the structure of these ions is not clear, they are suggested to proceed through a pentavalent phosphorane intermediate. The major fragment in ECD of d(GCATGC) is a d ion. Radical a- or z-type fragment ions are observed in most cases. IRMPD primarily results in base loss, but backbone fragmentation is also observed. IRMPD provides more sequence information than ECD, but the spectra are more complex due to extensive base and water losses. It is proposed that the smaller degree of sequence coverage in ECD, with fragmentation mostly occurring close to the ends of the molecules, is a consequence of a mechanism in which the electron is captured at a P=O bond, resulting in a negatively charged phosphate group. Consequently, at least two protons (or alkali metal cations) must be present to observe a w or d fragment ion, a requirement that is less likely for small fragments.  相似文献   

20.
Glycosylation of proteins represents one of the most important post-translational modifications. The structural characterisation of glycoproteins--especially with respect to the determination of the glycosylation site--by direct mass spectrometric methods still remains an elusive goal. We have applied the low energy dissociation method electron capture dissociation (ECD) in a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer to the structural elucidation of mucin-derived peptides glycosylated with glycans of different core types. Capture of an electron by multiply protonated precursor ions [M + nH](n+) resulted in the formation of reduced odd electron radical cations [M + nH](n-1)+*. Subsequent cleavage of the N-Calpha bonds of the peptide chain, mostly without loss of the labile sugar moiety, represents a major fragmentation pathway allowing unambiguous assignment of the glycosylation site. In addition to peptide backbone cleavages, loss of acetyl radicals from the N-acetyl group of the HexNAc glycans is observed. Radical site induced elimination processes of the glycan moieties initiated by hydrogen transfer, from the glycan to the peptide backbone and vice versa give rise to signals in the ECD spectra. The different sugar core types exhibit different fragmentation patterns driven by the stability of the resulting fragments allowing the discrimination of isomeric glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号