首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of sodium N-lauroylsarcosinate (SLS) with N-cetylpyridinium chloride (CPC) and N-dodecylpyridinium chloride (DPC) was investigated in aqueous mixtures. A strong interaction between the anionic and cationic surfactants was observed. The interaction parameter, β was determined for a wide composition range and was found to be negative. The mixed systems were found to have much lower critical micelle concentration (cmc) and surface tension at cmc. The surfactant mixtures exhibit synergism in the range of molar fractions investigated. The self-assembly formation in the mixtures of different compositions and total concentrations were studied using a number of techniques, including surface tension, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), confocal fluorescence microscopy (CFM). Thermodynamically stable unilamellar vesicles were observed to form upon mixing of the anionic and cationic surfactants in a wide range of composition and concentrations in buffered aqueous media. TEM as well as DLS measurements were performed to obtain shape and size of the vesicular structures, respectively. These unilamellar vesicles are stable for periods as long as 3 months and appear to be the equilibrium form of aggregation. Effect of pH, and temperature on the stability was investigated. The vesicular structures were observed to be stable at pH as low as 2.0 and at biological temperature (37°C). In presence of 10 mol% of cholesterol the mixed surfactant vesicles exhibited leakage of the encapsulated calcein dye, showing potential application in pH-triggered drug release.  相似文献   

2.
Mixed micelles formed with cetyl pyridinium chloride (CPC), cetyl trimethylammonium bromide (CTAB), and polyoxyethylene (10) cetyl ether (Brij-56) mixed in different combinations in aqueous medium have been studied in detail by tensiometric, conductometric, calorimetric, spectrophotometric, and fluorimetric techniques. Different physicochemical properties such as critical micellar concentration (cmc), micellar dissociation, energetic parameters (free energy, enthalpy, and entropy) of micellization, interfacial adsorption, and micellar aggregation number have been determined. The results have been analyzed in terms of the equations of Clint, Motomura, Rosen, Rubingh, Blankschtein et al., and Rubingh and Holland for justification of the experimental cmc, determination of micellar composition parameters, quantification of interaction among the mixed micelle components, and estimation of their activity coefficients.  相似文献   

3.
 Fluorescence-quenching of pyrene in micellar system has been investigated using 1,1,2,2-tetrahydroheptadecafluorodecylpyridinium chloride (HFDePC). The new fluorocarbon quencher has a similar quenching ability as hexadecyl-pyridinium chloride (CPC) towards pyrene in hydrocarbon micelles if only a quencher molecule is solubilized in a micelle. The fluorocarbon quencher randomly distributed among micelles if the average occupancy number of probes per a micelle was small enough. The fluorescence behavior of pyrene was examined for hexadecyl-trimethylammonium chloride (CTAC) and HFDePC mixtures. The variation of fluorescence intensity gave second cmc, reflecting the micellar immiscibility of fluorocarbon and hydrocarbon surfactants. The second cmc can be simulated by material balances of both surfactants supposing the coexistence of two kinds of mixed micelles. The fluorescence-quenching behavior suggested the enhanced micellar immiscibility probably due to nonrandom distribution of fluorocarbon quenchers among micelles. Received: 13 March 1997 Accepted: 24 May 1997  相似文献   

4.
Abstract

Conductometric technique has been used to investigate the equilibrium properties of cetylpyridinium chloride (CPC) in the presence of a series of aliphatic alcohols. The dependence of conductivity of surfactant solution in the presence of particular amount of alcohol has been studied. According to the experimental results, ethanol cause to decrease the dielectric constant and conductivity of micellar solution. Alcohols with longer chain may change the conductivity of solution depend on concentration of surfactant. At low concentration of CPC near critical micelle concentration (cmc) region, the minimum value of conductivity can be observed. This minimum value can be controiled by decreasing of free monomer concentration and also increasing degree of dissociation of micelle because of penetration of alcohols in micellar core. Using Conductometric technique cmc and α (degree of dissociation of counterion) of CPC were evaluated. The micelle formation of CPC has been considered in ethylene glycol (E.G)/ water and glycerol/water mixtures. It has been shown, the logarithm of cmc is directly depended on the ratio of E.G/water or glycerol/water.  相似文献   

5.
Mixed micellization of dimeric cationic surfactants tetramethylene-1,4-bis(hexadecyldimethylammonium bromide)(16-4-16), hexamethylene-1,6-bis(hexadecyldimethylammonium bromide) (16-6-16) with monomeric cationic surfactants hexadecyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB), cetylpyridinium chloride (CPC), and tetradecyltrimethylammonium bromide (TTAB) have been studied by conductivity and steady-state fluorescence quenching techniques. The behavior of mixed systems, their compositions, and activities of the components have been analyzed in the light of Rubingh's regular solution theory. The results indicate synergism in the binary mixtures. Ideal and experimental critical micelle concentrations (i.e., cmc(*) and cmc) show nonideality, which is confirmed by beta values and activity coefficients. The micelle aggregation numbers (N(agg)), evaluated using steady-state fluorescence quenching at a total concentration of 2 mM for CTAB/16-4-16 or 16-6-16 and 5 mM for TTAB/16-4-16 or 16-6-16 systems, indicate that the contribution of conventional surfactants was always more than that of the geminis. The micropolarity, dielectric constant and binding constants (K(sv)) of mixed systems have also been evaluated from the ratios of respective peak intensities (I(1)/I(3) or I(0)/I(1)).  相似文献   

6.
Isotherms of binding of dodecylpyridinium chloride (DPC) and cetylpyridinium chloride (CPC) by copolymers of maleic acid (MA; degree of neutralization=1) with methyl methacrylate (MMA), styrene (St), and vinyl acetate (VA) were determined at various salt concentrations by using the potentiometric technique. The average composition of copolymers corresponds to designations MA(MMA)3, MASt, and MAVA. Very different binding behavior has been found. The cooperativity parameter, u, for binding to MA(MMA)3 is the lowest and displays no dependence on ionic strength, which is a consequence of significant hydrophobic polymer-surfactant interactions. Isotherms for the DPC/MASt system display a two-step binding mechanism, which could not be clearly identified in the CPC/MASt case, presumably due to interference of surfactant micellization with the second step. It is proposed that the first step of binding in DPC/MA(MMA)3 and in DPC/MASt solutions is of electrostatic origin, as is the second step in DPC/MASt. On the contrary, the second step in DPC/MA(MMA)3 is mostly due to hydrophobic interactions of surfactant hydrocarbon tails with the predominantly uncharged DPC/MA(MMA)3 complex. MAVA solutions display the highest critical aggregation concentration (cac) values, which show a slight decreasing trend with increasing ionic strength. The very compact form of the MAVA copolymer at high salt content was responsible for this.  相似文献   

7.
Conductivity measurements have been carried out on aqueous solutions of two antidepressant drugs (nortriptyline hydrochloride and clomipramine hydrochloride) with four cationic surfactants (monomeric: cetyltrimethylammonium bromide, tetradecylammonium bromide; dimeric: 1,5-pentanediyl-alpha-omega-bis(hexadecyldimethylammonium bromide), 1,4-butanediyl-alpha,omega-bis(hexadecyldimethylammonium bromide) as well as with sodium chloride. Counterions from NaCl adsorb to the charged headgroup of the drug molecules and reduce the repulsion, hence cmc decreases. cmc values decreased with the addition of surfactants indicating mixed micelle formation. Experimental mole fraction of surfactants in micelle (X1) and their ideal values (X1 id) also support this explanation. Interaction parameter, beta, and excess free energy of micellization are negative suggesting synergism in mixed state. Activity coefficients are less than unity which means non-ideal mixing.  相似文献   

8.
稳态荧光探针法测定三聚季铵盐表面活性剂的胶束聚集数   总被引:5,自引:0,他引:5  
以芘为荧光探针, 十六烷基氯化吡啶(CPC)为猝灭剂, 以芘的饱和水溶液为溶剂配制表面活性剂溶液, 根据芘的荧光强度之比I1/I3随表面活性剂水溶液浓度的变化, 测定了三聚季铵盐表面活性剂CTTTA的cmc值, 测定值与表面张力法测定的cmc值一致;当猝灭剂CPC的浓度取0.1~0.3 mmol·L-1范围时, 用稳态荧光探针法测定了CTTTA的胶束聚集数. 实验数据表明, 表面活性剂溶液浓度为6~10倍cmc时, 胶束聚集数N随表面活性剂浓度增大而线性增大, 并用外推法得到CTTTA的临界胶束聚集数.  相似文献   

9.
Micellization parameters, critical micelle concentration (cmc), degree of counterion dissociation (α), aggregation number (n), critical packing parameter, and hydrophobic core volume of Dodecylpyridinium chloride (DPC) micelles were determined in presence of varying concentrations of sodium chloride (NaCl), sodium acetate (SAc), sodium propionate (SPr), ethylammonium chloride (EACl), diethylammonium chloride (DEACl), tetraethylammonium chloride (TEACl), and propylammonium chloride (PACl) through conductometric investigations at 298.15 K. The resulting data suggests that both counter and coions affect the cmc values‐cmc depressing tendency of the salts varies in order PACl≈NaCl>EACl>DEACl>TEACl>SPr>SAc, while the degree of counterion dissociation is dependent on the nature and concentration range of the added salt. Increasing salt concentration increases the relative hydrophobic volume of the micelles and coion has not much effect on aggregation number.  相似文献   

10.
研究了十二烷基胺盐酸盐(DAC)和十二烷基聚氧乙烯硫酸钠(AES)复配体系的表面性质与胶束化行为.发现该体系在广泛的复配比例区间和温度区间内保持了极为优异的表面活性,测定了该体系的临界胶束浓度(cmc)与其对应的表面张力(γcmc)的具体值,并研究了温度、pH值和离子强度等环境因素对相关体系的影响.  相似文献   

11.
The behavior of the mixed amphiphilic drug promethazine hydrochloride(PMT) and cationic as well as nonionic surfactants was studied by tensiometry.The cmc values of the PMT-surfactant systems decrease at a surfactant mole fraction of 0.1 and it then becomes constant.The critical micelle concentration(cmc) values are lower than the ideal cmc(cmc*) values for PMT/TX-100,PMT/TX-114,PMT/Tween 20,and PMT/Tween 60 systems.For the PMT/Tween 40,PMT/Tween 80,PMT/CPC,and PMT/CPB systems the cmc values are close to the cmc* values.This indicates that PMT forms mixed micelles with these surfactants by attractive interactions.The surface excess(Γmax) decreases in the presence of surfactants.The rigid structure of the drug makes adsorption easier and the contribution of the surfactant at the interface decreases.The interaction parameters βm(for the mixed micelles) and βσ(for the mixed monolayer) are negative indicating attraction among the mixed components.  相似文献   

12.
The micellization behavior of hexadecylpyridinium chloride usually called cetylpyridinium chloride (CPC) in presence of sodium salicylate ( NaSal) has been investigated. The surface tension, conductance and microcalorimetric methods have been employed to determine the critical micellar concentration (CMC) of CPC and NaSal mixed in different molar proportions. The interfacial area occupied by CPC in presence of NaSal, the free energy of adsorption and the energetics of micellizatton have been evaluated. The enthalpy of interaction of NaSal with CPC micelle has also been estimated from microcalorimetric measurements. The shear viscosity of the CPC-NaSal combination at equimolar proportion at different surfactant concentration and temperature, and also the shear viscosity of CPC-NaSal combination at different molarity ratios with a fixed surfactant concentration have been determined. The static and dynamic light scattering measurements of the CPC-NaSal system at different composition and in presence of NaCl have been reported. Worm-like micelles of concentration dependent dimension and intermicellar repulsive interaction have been envisaged.  相似文献   

13.
NMR self-diffusion coefficient measurements have been used to study the properties of polyethylene glycol (23) lauryl ether (Brij-35) with cetyltrimethylammonium bromide (CTAB) in the mixed aqueous solutions with different mole fractions of CTAB. By fitting the self-diffusion coefficients to the two-state exchange model, the critical micelle concentrations of the two solutes in the mixed solutions (cmc*1 and cmc*2) were obtained. The critical mixed micelle concentrations (cmc*) were then evaluated by the sum of cmc*1 and cmc*2, which are in good agreement with the results measured by the surface tension method. The cmc* values are lower than those of the ideal case of mixing, which indicates that the behavior of the CTAB/Brij-35 system is nonideal. Moderate interactions between CTAB and Brij-35 in their mixtures can be deduced from the interaction parameters (betaM) based on the cmc* obtained by the NMR self-diffusion method. The compositions (x1) of the mixed micelles at different total surfactant concentrations were also evaluated. By using these results, a possible mechanism of mixed micellar formation and a picture of the formation of nonsimultaneous CTAB/Brij-35 binary mixed micelle were proposed. In contrast to the case of CTAB/TX-100 system, Brij-35 molecules have a tendency to form micelles first at any mole fraction of CTAB. The mixed micellar self-diffusion coefficients (Dm) increase slightly at lower CTAB molar ratios, and then speed up with increasing CTAB mole fraction.  相似文献   

14.
The binding of organic contaminants to dissolved humic acids reduces the free concentration of the contaminants in the environment and also may cause changes to the solution properties of humic acids. Surfactants are a special class of contaminants that are introduced into the environment either through wastewater or by site-specific contamination. The amphiphilic nature of both surfactants and humic acids can easily lead to their mutual attraction and consequently affect the solution behavior of the humics. Binding of an anionic surfactant (sodium dodecyl sulfate, SDS) and two cationic surfactants (dodecyl- and cetylpyridinium chloride, DPC and CPC) to purified Aldrich humic acid (PAHA) is studied at pH values of 5, 7, and 10 in solutions with a 0.025 M ionic strength (I). Monomer concentrations of the surfactants are measured with a surfactant-selective electrode. At I = 0.025 M, no significant binding is observed between the anionic surfactant (SDS) and PAHA, whereas the two cationic surfactants (DPC, CPC) bind strongly to PAHA over the pH range investigated. The binding is due both to electrostatic and hydrophobic attraction. The initial affinity increases with increasing pH (i.e., negative charge of PAHA) and tail length of the surfactant. Binding reaches a pseudo-plateau value (2-5 mmol/g) when the charge associated with PAHA is neutralized by that of the bound surfactant molecules. The pseudo-plateau values for DPC and CPC are very similar and depend on the solution pH. The cationic surfactant-PAHA complexes precipitate when the charge neutralization point is reached. This occurs at approximately 10% of the critical micelle concentration or CMC. This type of phase separation commonly occurs during surfactant binding to oppositely charged polyelectrolytes. For CPC, the precipitation is complete, but in the case of DPC, a noticeable fraction of PAHA remains in solution. At very low CPC concentrations (less than 0.1% of the CMC), CPC binding to PAHA is cooperative. The investigated range of concentrations for DPC was too limited to reach a similar conclusion. The results of this study demonstrate that the fate of humic acids will be strongly affected by the presence of low cationic surfactant concentrations in aqueous environmental systems.  相似文献   

15.
We report atomic force microscopy (AFM) measurements of the forces between borosilicate glass solids in aqueous mixtures of cationic and zwitterionic surfactants. These forces are used to determine the adsorption of the surfactant as a function of the separation between the interfaces (proximal adsorption) through the application of a Maxwell relation. In the absence of cationic surfactant, the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS) undergoes little adsorption to glass at concentrations up to about 2/3 critical micelle concentration (cmc). In addition, DDAPS does not have much effect on the forces over the same concentration range. In contrast, the cationic surfactant dodecylpyridinium chloride (DPC) does adsorb to glass and does affect the force between glass surfaces at concentrations much lower than the cmc. In the presence of a small amount of DPC (0.05 mM = cmc/300), the net force between the glass surfaces is quite sensitive to the solution concentration of DDAPS. A model-independent thermodynamic argument is used to show that the surface excess of DDAPS depends on the separation between the glass interfaces when the cationic surfactant is present and that the surface excess of the cationic surfactant is more sensitive to interfacial separation in the presence of the zwitterionic surfactant. The change in adsorption of the zwitterionic surfactant is explained in terms of an intermolecular coupling between the long-range electrostatic force acting on the cationic surfactant and the short-range hydrophobic interaction between the alkyl chains on the cationic and zwitterionic surfactants. The adsorptions of cationic and zwitterionic surfactants in mixtures were measured independently and simultaneously by attenuated total internal reflection infrared spectroscopy (ATR-IR). The adsorption of the zwitterionic surfactant is enhanced by the presence of a small amount of cationic surfactant.  相似文献   

16.
Two breaks have been found on the conductivity, refractive index, density and sound velocity against molality plots for aqueous solutions of dodecyldimethylbenzylammonium chloride at 25 °C, in the absence of any additive. The first break corresponds to the critical micelle concentration, cmc. The second, less distinct break, occurring in the molality range of 0.082 to 0.104 mol kg-1, in dependence on the technique applied, has been ascribed to the second critical micelle concentration, 2nd cmc, responsible for structural transitions of spherical micelles. Values of cmc and 2nd cmc have been also estimated conductometrically for tetradecyltrimethylammonium bromide and dodecylpyridinium chloride. On the basis of available conductometric data it has been shown that the 2nd cmc/cmc ratio varies in the range of 2 to 10 in dependence on the type of 1:1 ionic surfactant. It has been also shown that for a given class of surfactants, the logarithm of 2nd cmc varies linearly with the number of carbon atoms in the alkyl chain ( n= 12, 14 and 16). Both empirical regression coefficients depend upon the class of surfactants considered.  相似文献   

17.
The micellization behavior of binary combinations of alkyltriphenylphosphonium bromides (ATPBs) with alkyl chain carbons 10, 12, 14, and 16 has been studied by conductometry and calorimetry. The combinations C(10)-C(12), C(10)-C(14), C(10)-C(16), C(12)-C(14), C(12)-C(16), and C(14)-C(16) were found to form two cmc's by both the methods, with good agreement, except C(14)-C(16)TPB, which has evidenced only a single cmc by calorimetry for all combinations. The combinations C(10)-C(12) (for both cmc(1) and cmc(2)) and C(10)-C(14)TPB (for cmc(2)) formed ideal mixtures, whereas the rest were nonideal. In the nonideal binary mixtures, the ATPB components showed antagonistic interaction with each other. The cmc, interaction parameter (beta), mixed micellar composition, extent of counterion binding, and thermodynamic parameters for the micellization process have been reported and discussed. The enthalpy of mixed micelle formation has been found to have a fair correlation with a Clint-type relation applicable to ideal binary mixtures of surfactants.  相似文献   

18.
The interactions of temperature-responsive copolymers of sodium 2-acrylamido-2-methyl-1-propanesulfonate (AMPS) and N-isopropylacrylamide (NIPAM) with a cationic surfactant, dodecyltrimethylammonium chloride (DTAC), have been studied. The content of AMPS in the copolymers ranged from 1.1 to 9.6 mol%. The surface activity was higher for the polymers with lower AMPS content. It was found that DTAC undergoes association with the polymer chain, forming mixed polymer-surfactant micelles. The values of cac for the polymers were found in fluorescence studies using pyrene as the fluorescent probe. They were in the range 0.9-3.6x10(-3) M and were lower for polymers with higher AMPS content. An increase in DTAC concentration up to about its cmc results in a decrease of the LCST (lower critical solution temperature) of the copolymers, while further increase above the cmc results in an increase of the LCST. The minimum value of LCST in the presence of the surfactant is lower than the LCST of NIPAM homopolymer.  相似文献   

19.
The critical micelle concentration (cmc) and ionisation degree (α), of micelles of cetyltrimethylammonium bromide (CTABr), cetyltrimethylammonium chloride (CTACl), cetyltripropylammonium bromide (CTPABr) and cetyltripropylammonium chloride (CTPACl) have been measured over a narrow temperature range at 2 degree intervals using electrical conductivity. CTPACl and CTPABr are very soluble in water and were measured in the temperature range 275.15-323.15K. The Krafft temperatures for CTABr and for CTACl are 293.15K and 284.15K, respectively and established a lower temperature limit for our studies on these two surfactants. The cmc vs temperature curves have a smooth minimum near room temperature and α linearly increases with temperature. The changes of cmc and α with temperature are smaller than those associated with the modification of head group size or counterion nature. Using these results, basic thermodynamic quantities associated with the phenomena of micellization have been evaluated. Thermodynamic properties of the surfactant solutions were discussed in terms of temperature dependence of the free energy, enthalpy and entropy of micellization. A close similarity between the effects of change in temperature on protein folding and micellization process appears from the data.  相似文献   

20.
Density, speed of sound, and conductivity of benzyldimethyltridecylazanium chloride as a cationic surfactant in aqueous solutions have been measured as a function of concentration at atmospheric pressure and at five temperatures (293.15, 298.15, 303.15, 308.15, and 313.15) K. Isentropic compressibility values have also been calculated from the experimental density and speed of sound results. The critical micelle concentration (cmc) values of investigated cationic surfactant were evaluated by using conductivity measurements. The speed of sound, isentropic compressibility and also the conductivity values of the solutions have been employed to determine the second critical micelle concentrations (2nd cmc). The temperature dependence of the speed of sound and isentropic compressibility is shown to be sensitive to the aggregation process. The 2nd cmc values of the surfactant obtained at different temperatures by conductivity, speeds of sound and isentropic compressibility data are in agreement with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号