首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, nonmetal doping has exhibited its great potential for boosting the hydrogen evolution reaction (HER) of transition-metal (TM)-based electrocatalysts. To this end, this work overviews the recent achievements made on the design and development of the nonmetal-doped TM-based electrocatalysts and their performance for the HER. It is also shown that by rationally doping nonmetal elements, the electronic structures of TM-based electrocatalysts can be effectively tuned and in turn the Gibbs free energy of the TM for adsorption of H* intermediates (ΔGH*) optimized, consequently enhancing the intrinsic activity of TM-based electrocatalysts. Notably, we highlight that concurrently doping two nonmetal elements can continuously and precisely regulate the electronic structures of the TM, thereby maximizing the activity for HER. Moreover, nonmetal doping also accounts for enhancing the physical properties of the TM (i.e. surface area). Therefore, nonmetal doping is a robust strategy for simultaneous regulation of the chemical and physical features of the TM.  相似文献   

2.
氢气因为其高质量比活性,环境友好等特点,被公认为是一种很有希望替代化石能源的可再生能源.其中,碱性条件电解水被认为是可大规模生产氢气的技术之一.但氢气析出反应在碱性条件反应速率缓慢,为提升氢气析出反应速率,因此研究者们设计和制备了大量的材料.本文归纳了有效促进碱性条件氢气析出反应速率的关键材料——层状过渡金属氢氧化物的重要研究进展.首先,基于过渡金属氢氧化物的结构,阐述了过渡金属氢氧化物与氢气析出反应活性材料间的协同催化机理.接着,以提升协同催化作用为中心,归纳了基于过渡金属氢氧化物的氢气析出反应催化剂和电极的最近研究进展,分别包含过渡金属氢氧化物和氢气析出反应活性材料的种类、结构、形貌及其相互作用.此外,本文从高活性和长寿命的催化剂和电极设计出发,归纳了最近基于过渡金属氢氧化物的催化剂和电极在水分解领域的进展.最后,本文总结和展望了电解水制氢技术的未来应用和发展中不可避免的一些问题与挑战.目前,应用于氢析出反应的过渡金属氢氧化物主要集中于镍基、钴基和铁基氢氧化物和其双金属氢氧化物,为层状水滑石结构.因为上述过渡金属氢氧化物弱的氢吸附,所以其析氢活性非常低.但是过渡金属氢氧化物对氢氧根...  相似文献   

3.
电解水制氢技术是未来获得清洁氢能源的有效途径之一。铂作为高效的电解水制氢催化剂,由于其价格昂贵,难以回收,不利于氢能源与氢经济的发展,因此发展高效的非贵金属电催化剂,使电解水制氢过程更加高效、经济化是十分关键的科学问题。本文综述了近年来电解水制氢催化剂的研究进展,重点集中在以碳纤维材料为基底的非贵金属催化剂领域。总结了几类重要的多相异质非贵金属催化剂,包括磷化物、硫化物、硒化物、碳化物、氧化物催化剂等,重点探讨了各种析氢催化剂的合成方法和性能提高策略。同时,本文也简要概述了碳纤维基底材料在电分析化学检测方面的应用研究。  相似文献   

4.
The ampoule method provides a promising pathway towards the controllable synthesis of novel electrocatalysts for water electrolysis due to its straightforward manipulation of reaction conditions, accessible experimental design, and controlled environment. This Concept introduces the development of the ampoule method and anticipates its application in electrocatalyst synthesis for water electrolysis. First, the history, device configuration, and merits of the ampoule method are briefly introduced. Afterwards, typical materials synthesized by the ampoule method are discussed. Then, recent process in applying the ampoule method to synthesize electrocatalysts for water electrolysis is highlighted. Finally, opportunities and potentials of this method in facilitating electrocatalyst synthesis for water electrolysis are discussed.  相似文献   

5.
《中国化学快报》2021,32(9):2597-2616
Electrochemical overall water splitting is attracting a broad focus as a promising strategy for converting the electrical output of renewable resources into chemical fuels, specifically oxygen and hydrogen. However, the urgent challenge in water electrolysis is to search for low-cost, high-efficiency catalysts based on earth-abundant elements as an alternative to the high-cost but effective noble metal-based catalysts. The transition metal-based catalysts are more appealing than the noble metal catalysts because of its low cost, high performance and long stability. Some recent advances for the development in overall water splitting are reviewed in terms of transition metal-based oxides, carbides, phosphides, sulfides, and hybrids of their mixtures as hybrid bifunctional electrocatalysts. Concentrating on different catalytic mechanisms, recent advances in their structural design, controllable synthesis, mechanistic insight, and performance-enhancing strategies are proposed. The challenges and prospects for the future development of transition metal-based bifunctional electrocatalysts are also addressed.  相似文献   

6.
Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large-scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half-reaction. Co-, Ni-, and Fe-based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co-, Ni-, and Fe-based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.  相似文献   

7.
Dimension engineering plays a critical role in determining the electrocatalytic performance of catalysts towards water electrolysis since it is highly sensitive to the surface and interface properties. Bearing these considerations into mind, intensive efforts have been devoted to the rational dimension design and engineering, and many advanced nanocatalysts with multidimensions have been successfully fabricated. Aiming to provide more guidance for the fabrication of highly efficient noble-metal-based electrocatalysts, this review has focused on the recent progress in dimension engineering of noble-metal-based electrocatalysts towards water splitting, including the advanced engineering strategies, the application of noble-metal-based electrocatalysts with distinctive geometric structure from 0D to 1D, 2D, 3D, and multidimensions. In addition, the perspective insights and challenges of the dimension engineering in the noble-metal-based electrocatalysts is also systematically discussed.  相似文献   

8.
Electrochemical water splitting (EWS) is a sustainable and promising technology for producing hydrogen as an ideal energy carrier to address environmental and energy issues. Developing highly‐efficient electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is critical for increasing the efficiency of water electrolysis. Recently, nanomaterials derived from Prussian blue (PB) and its analogs (PBA) have received increasing attention in EWS applications owing to their unique composition and structure properties. In this Minireview, the latest progress of PB/PBA‐derived materials for EWS is presented. Firstly, the catalyst design principles and the advantages of preparing electrocatalysts with PB/PBA as precursors are briefly introduced. Then, strategies for enhancing the electrocatalytic performance (HER, OER or overall water splitting) were discussed in detail, and the recent development and applications of PB/PBA‐derived catalysts for EWS were summarized. Finally, major challenges and possible future trends related to PB/PBA‐derived functional materials are proposed.  相似文献   

9.
氢能作为零碳排放能源是被公认的最清洁能源之一,如何有效可持续地产氢是未来人类步入氢能经济首先要解决的问题。电解水技术基于电化学分解水的原理,利用可再生电能或太阳能驱动水分解为氢气和氧气,被认为是最有前途和可持续性的产氢途径。然而,无论是光解水还是电解水,均需要高活性、高稳定性的非贵金属氢析出和氧析出催化剂以使水电解反应经济节能。本文介绍了我们研究所近三年在水电解方面的研究进展,其中着重介绍了:(ⅰ)氢析出催化剂,包括利用低温磷化过渡金属(氢)氧化物的方法制备过渡金属磷化物,同时过渡金属硫化物、硒化物以及碳化物等均被成功合成并被应用为有效的阴极析氢催化剂;(ⅱ)氧析出催化剂,主要包括金属磷化物、硫化物、氧化物/氢氧化物等;(ⅲ)双功能催化剂,主要包括过渡金属磷化物、硒化物、硫化物等。最后,总结展望了发展水电解非贵金属催化剂所面临的挑战与未来发展方向。  相似文献   

10.
Seawater electrolysis is considered an attractive alternative to conventional freshwater electrolysis for hydrogen production due to the abundance of seawater in nature. For this reason, efficient electrocatalysts for hydrogen evolution reaction (HER) in alkaline seawater are highly desired. In this study, we report an amorphous Co−P alloy on nickel foam (Co−P/NF) that behaves as an efficient and stable HER electrocatalyst for alkaline seawater electrolysis. The Co−P/NF presents high catalytic performance for HER, requiring a low overpotential of 213 mV to drive a current density of 100 mA cm−2 and a Tafel slope of 120.2 mV dec−1 in alkaline seawater. Furthermore, it shows remarkable electrochemical and structural stability in alkaline seawater.  相似文献   

11.
Hydrogen production by energy-efficient water electrolysis is a green avenue for the development of contemporary society. However, the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR) occurring at the anode are impeded by the sluggish reaction kinetics during the water-splitting process. Consequently, it is promising to develop bifunctional anodic electrocatalysts consisting of nonprecious metals. Herein, a bifunctional CoMn layered double hydroxide (LDH) was grown on nickel foam (NF) with a 1D–2D–3D hierarchical structure for efficient OER and UOR performance in alkaline solution. Owing to the significant synergistic effect of Mn doping and heterostructure engineering, the obtained Co1Mn1 LDH/NF exhibits satisfactory OER activity with a low potential of 1.515 V to attain 10 mA cm−2. Besides, the potential of the Co1Mn1 LDH/NF catalyst for UOR at the same current density is only 1.326 V, which is much lower than those of its counterparts and most reported electrocatalysts. An urea electrolytic cell with a Co1Mn1 LDH/NF anode and a Pt–C/NF cathode was established, and a low cell voltage of 1.354 V at 10 mA cm−2 was acquired. The optimized strategy may result in promising candidates for developing a new generation of bifunctional electrocatalysts for clean energy production.  相似文献   

12.
Noble metal (Pt, Pd) electrocatalysts supported on carbon microspheres (CMS) are used for methanol and ethanol oxidation in alkaline media. The results show that noble metal electrocatalysts supported on carbon microspheres give better performance than that supported on carbon black. It is well known that palladium is not a good electrocatalyst for methanol oxidation, but it shows excellently higher activity and better steady-state electrolysis than Pt for ethanol electrooxidation in alkaline media. The results show a synergistic effect by the interaction between Pd and carbon microspheres. The Pd supported on carbon microspheres in this paper possesses excellent electrocatalytic properties and may be of great potential in direct ethanol fuel cells.  相似文献   

13.
Electrochemical water splitting is a clean and sustainable process for hydrogen production on a large scale as the electrical power required can be obtained from various renewable energy resources. The key challenge in electrochemical water splitting process is to develop low-cost electrocatalysts with high catalytic activity for the hydrogen evolution reaction (HER) on the cathode and the oxygen evolution reaction (OER) on the anode. OER is the most important half-reaction involved in water splitting, which has been extensively studied since the last century and a large amount of electrocatalysts including noble and non-noble metal-based materials have been developed. Among them, transition metal borides and borates (TMBs)-based compounds with various structures have attracted increasing attention owing to their excellent OER performance. In recent years, many efforts have been devoted to exploring the OER mechanism of TMBs and to improving the OER activity and stability of TMBs. In this review, recent research progress made in TMBs as efficient electrocatalysts for OER is summarized. The chemical properties, synthetic methodologies, catalytic performance evaluation, and improvement strategy of TMBs as OER electrocatalysts are discussed. The electrochemistry fundamentals of OER are first introduced in brief, followed by a summary of the preparation and performance of TMBs-based OER electrocatalysts. Finally, current challenges and future directions for TMBs-based OER electrocatalysts are discussed.  相似文献   

14.
Ru-based materials hold great promise for substituting Pt as potential electrocatalysts toward water electrolysis. Significant progress is made in the fabrication of advanced Ru-based electrocatalysts, but an in-depth understanding of the engineering methods and induced effects is still in their early stage. Herein, we organize a review that focusing on the engineering strategies toward the substantial improvement in electrocatalytic OER and HER performance of Ru-based catalysts, including geometric structure, interface, phase, electronic structure, size, and multicomponent engineering. Subsequently, the induced enhancement in catalytic performance by these engineering strategies are also elucidated. Furthermore, some representative Ru-based electrocatalysts for the electrocatalytic HER and OER applications are also well presented. Finally, the challenges and prospects are also elaborated for the future synthesis of more effective Ru-based catalysts and boost their future application.  相似文献   

15.
电催化水分解因其丰富的原料来源和环境友好被认为是一种有前途的制氢技术. 开发用于电催化析氢反应的高效电催化剂是迫切需要的. 随着石墨烯的兴起, 二维(2D)材料因其独特的物理、 化学和电子特性, 已逐渐成为水电解的潜在候选材料. 本文介绍了二维材料用于电化学水分解产生氢气的最新进展, 概括了二维材料的合成方法, 总结了改善二维材料电化学析氢性能的策略, 讨论了该领域面临的挑战和未来的发展机遇.  相似文献   

16.
《Journal of Energy Chemistry》2017,26(6):1203-1209
Rational design of advanced cost-effective electrocatalysts is vital for the development of water electrolysis. Herein, we report a novel binder-free efficient Co_9S_8@Co_3O_4 core/shell electrocatalysts for oxygen evolution reaction(OER) via a combined hydrothermal-sulfurization method. The sulfurized net-like Co_9S_8 nanoflakes are strongly anchored on the Co_3O_4 nanowire core forming self-supported binder-free core/shell electrocatalysts. Positive advantages including larger active surface area of Co_9S_8 nanoflakes,and reinforced structural stability are achieved in the Co_9S_8@Co_3O_4 core/shell arrays. The OER performances of the Co_9S_8@Co_3O_4 core/shell arrays are thoroughly tested and enhanced electrocatalytic performance with lower over-potential(260 m V at 20 m A cm~(-2)) and smaller Tafel slopes(56 mV dec-1) as well as long-term durability are demonstrated in alkaline medium. Our proposed core/shell smart design may provide a new way to construct other advanced binder-free electrocatalysts for applications in electrochemical catalysis.  相似文献   

17.
《中国化学快报》2023,34(4):107735
Organic electrosynthesis as an emerging green and advantageous alternative to traditional synthetic methods has achieved remarkable progress in recent years because sustainable electricity can be employed as traceless redox agents. To surmount the over-oxidation/reduction issues of direct electrolysis, mediated or indirect electrochemical processes are attaining remarkable significance and promoting the selectivity of products. Molecular electrocatalysts, benefiting from the easily electronic and steric modulation, suffers from readily degradation issue in most cases. Remarkably, heterogeneous catalysts have drawn more attention due to their high activity, stability, and recyclability. Hence, in this review, the most recent growth of heterogeneous catalysts modified electrodes for organic electrosynthesis were summarized, highlighting structural optimization and electrochemical performance of these materials as well as reaction mechanism. Furthermore, key challenges and future directions in this area were also discussed.  相似文献   

18.
《中国化学快报》2023,34(9):108156-51
Hydrogen evolution from water electrolysis has become an important reaction for the green energy revolution. Traditional precious metals and their compounds are excellent catalysts for producing hydrogen; however, their high cost limits their large-scale practical application. Therefore, the development of affordable electrocatalysts to replace these precious metals is important. Transition metal phosphides(TMPs) have shown remarkable performance for hydrogen evolution and garnered considerable ...  相似文献   

19.
Two-dimensional nickel hydroxide nanosheets were synthesized by exfoliating surfactant intercalated layered nickel hydroxides and developed as electrocatalysts for urea electro-oxidation. The electro-oxidation of urea on Ni(OH)2 nanosheet modified electrodes shows a decrease of 100 mV in overpotential and an enhancement in current density, which reaches ca.154 mA cm− 2 mg− 1, by a factor of ca. 170 compared to bulk Ni(OH)2 powder modified electrodes. The Ni(OH)2 nanosheets have promising applications in urea-rich wastewater remediation, hydrogen production, electrochemical sensors, and fuel cells due to their ability to promote the urea electrolysis reaction.  相似文献   

20.
氢气因其能量密度高、零排放和可再生的特点被广泛认为是最有前景的能源.电解水是一种产生高纯氢气的有效途径.目前,高性能的促进水电解的催化剂主要是贵金属材料,例如贵金属铂.然而,高成本大大阻碍了贵金属材料在电催化水分解中的广泛应用.因此,我们致力于研究具有高活性的非贵金属催化剂.因为电催化水分解析氢反应更容易发生在质子浓度高的条件下,所以研究碱性条件下催化析氢比研究酸性条件下催化析氢更具挑战性.在工业应用中,酸性电解质溶液对仪器设备的腐蚀性比碱性溶液更大,因此研究应用在碱性溶液中的析氢催化剂更有发展前景.过渡金属磷化物被广泛地研究作为高性能析氢电催化剂,然而过渡金属磷化物作为析氢催化剂的稳定性通常不是很好.我们通过钼元素的引入,提高过渡金属磷化物作为析氢催化剂的稳定性.电化学催化效率同样受到材料形貌和导电性的影响.大的比表面积有利于暴露更多的活性位点,使活性位点与电解质溶液的接触更加充分,有利于催化剂和溶液之间的传质.据报道,金属磷化物具有良好的导电性是由于磷化物中存在金属-金属键.所以合成具有大比表面积形貌的过渡金属磷化物材料能够满足析氢电催化剂对比表面积和导电性的两个需求.界面效应是调节催化剂性能的一个有效方法.析氢催化剂常常存在吸附质子能力过强或过弱、稳定性不好等问题.这些问题可以通过界面效应来解决.本文通过形成磷化估和钼钴氧的界面来调节改善磷化钴表面原来的电子密度,以达到理想的氢吸附自由能;同时此界面效应还能起到稳定催化剂性能的作用.本文首先采用水热法合成了红毛丹状钼钴氧空心微米小球前驱体.在钼酸根离子的引导下,利用奥斯特瓦尔德熟化原理一步实现了红毛丹状空心结构.前驱体再以次亚磷酸钠为磷源进行气相磷化,得到产物红毛丹状磷化钴@钼钴氧空心微米小球.通过扫描电镜和透射电镜对其红毛丹状空心结构进行了表征.利用X射线衍射和X射线光电子能谱等手段表征了材料的物相组成和价态分布.电化学测试均使用电化学工作站完成.该材料在碱性电解质溶液中展现了极好的电化学催化析氢性能,在电流密度为10 mA cm^-2时对应的析氢过电位仅为62 mV.在1 MKOH溶液中10 mA cm^-2电流密度下测试55 h,过电位仅增大约17 mV,显示了非常强的碱性析氢稳定性.得益于磷化钴和钼钴氧之间的界面效应,以及特殊的三维空心结构,红毛丹状磷化钴@钼钴氧空心微米小球表现出优异的析氢催化性能和稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号