首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文介绍了近年来纳米材料电化学与生物传感器在有机微污染物检测中的研究现状,分析了这些传感器中纳米材料修饰电极的特点,重点阐述了纳米材料在有机微污染物检测中的重要作用,列举了一些纳米材料电化学与生物传感器在有机微污染物检测中的应用。最后对纳米材料电化学与生物传感器用于有机微污染物的检测研究进行了简要评述和展望。  相似文献   

2.
This Review presents a concise, but not exhaustive, didactic overview of some of the main concepts and approaches related to “volatolomics”—an emerging frontier for fast, risk‐free, and potentially inexpensive diagnostics. It attempts to review the source and characteristics of volatolomics through the so‐called volatile organic compounds (VOCs) emanating from cells and their microenvironment. It also reviews the existence of VOCs in several bodily fluids, including the cellular environment, blood, breath, skin, feces, urine, and saliva. Finally, the usefulness of volatolomics for diagnosis from a single bodily fluid, as well as ways to improve these diagnostic aspects by “hybrid” approaches that combine VOC profiles collected from two or more bodily fluids, will be discussed. The perspectives of this approach in developing the field of diagnostics to a new level are highlighted.  相似文献   

3.
白万乔  乔学志  王铁 《电化学》2019,25(2):185-201
细胞新陈代谢的变化会导致挥发性有机化合物(VOCs)类型及含量发生变化,因此可通过分析某些标志性VOCs简立起多种疾病早期诊断的模型. 人体呼出物中特征VOCs的检测作为一种非侵入性、无损的检测手段,近些年在疾病检测领域已成为世界范围内的研究热点. 其中,纳米材料可用于增强传感器性能,并使传感器便携式小型化,推进检测传感器进入临床. 在这篇综述中,作者将种类繁多的传感器中用到的纳米材料归纳总结为金属、金属氧化物、碳基、复合物和MOFs基纳米材料等几类,并讨论了不同类纳米材料在VOCs检测中的优劣势. 本文所建立起的分析方法及讨论有助于进一步了解检测技术的优越性与局限性. 最后,作者对利用VOCs的检测实现癌症早期筛选的研究及发展提出了个人观点.  相似文献   

4.
The review presents advances and main challenges of the affinity sensors based on field- effect transistors published during the last five years. The different nanomaterial-based field-effect transistors are classified according to the nature of the nanomaterials, beginning by silicon, the “gold-standard” semiconductor, the gallium nitride semiconductor, the organic semiconductors, the silicon nanowires, the inorganic nanomaterials, the carbon nanotubes and the graphene. Due to its exceptional electrical properties, the main works are devoted to graphene. The obtained analytical performances for the detection of biomarkers, of DNA sequences and of miRNA are listed. The relation between the operational conditions - nature of the nanomaterials, procedure of preparation, choice of the receptor molecule, method of immobilization – and the analytical performance are discussed. The perspective of industrialization of these affinity sensors based on field-effect transistors is discussed.  相似文献   

5.
The development of efficient protocols for cancer diagnosis remains highly challenging. An emerging approach relies on the detection in exhaled breath of volatile organic compounds (VOC) produced by tumours. In this context, described here is a novel strategy in which a VOC‐based probe is converted selectively in malignant tissues, by a tumour‐associated enzyme, for releasing the corresponding VOC. The latter is then detected in the exhaled breath as a tumour marker for cancer diagnosis. This approach allows the detection of several different tumours in mice, the monitoring of tumour growth and tumour response to chemotherapy. Thus, the concept of “induced volatolomics” provides a new way to explore biological processes using VOC‐based probes that could be adapted to many biomedical applications.  相似文献   

6.
This article presents an overview of electrochemical sensors that employ nanomaterials and utilize electrochemical impedance spectroscopy for analyte detection. The most widely utilized nanomaterials in impedance sensors are gold (Au) nanoparticles and carbon nanotubes (CNTs). Au nanoparticles have been employed in impedance sensors to form electrodes from nanoparticle ensembles and to amplify impedance signals by forming nanoparticle-biomolecule conjugates in the solution phase. CNTs have been employed for impedance sensors within composite electrodes and as nanoelectrode arrays. The advantages of nanomaterials in impedance sensors include increased sensor surface area, electrical conductivity and connectivity, chemical accessibility and electrocatalysis.  相似文献   

7.
由于独特的光、电、磁以及催化性质,功能性纳米材料的研究已经渗透到各个学科并在不同领域展示出潜在的应用前景,尤其是利用纳米材料构建功能性电极界面、研究其电化学行为并发展新颖的电化学纳米器件引起了了人们的广泛关注. 本篇综述中,主要介绍作者研究小组在以功能性纳米材料构建新颖的电化学界面的最新进展,集中关注其在电化学传感器、燃料电池以及光谱电化学中的应用. 这些纳米材料的应用极大地增强了电子转移、提高了电化学传感器的灵敏度以及燃料电池的催化效率. 作者也通过合成一些光谱匹配的荧光以及电致变色纳米材料构建新颖的荧光光谱电化学器件,同时在材料的合成组装、多重刺激响应体系以及多功能化进行探索. 最后,作者对这类基于纳米材料的电化学器件的发展和应用予以展望.  相似文献   

8.
Sensor technology and its application in environmental analysis   总被引:1,自引:0,他引:1  
Environmental analysis is one of the fundamental applications of chemical sensors. In this review we describe different sensor systems for the gas and liquid phases that have been tested either with real-life samples or in the field during the last five years. Most field sensors rely either on electrochemical or optical transducers. In the gas phase, systems have been proposed for analysis of oxides of nitrogen, carbon, and sulfur in air, and volatile organic compounds. In the liquid phase, most detection systems used for real-life samples detect heavy-metal ions or organic contamination, for example pesticides, organic solvents and polycyclic aromatic hydrocarbons. Figure Chemical sensors for real-life environmental applications Dedicated to Professor Ulrich Nickel on the occasion of his 65th birthday.  相似文献   

9.
Many human activities and cellular functions depend upon precise pH values, and pH monitoring is considered a fundamental task. Colorimetric and fluorescence sensors for pH measurements are chemical and biochemical tools able to sense protons and produce a visible signal. These pH sensors are gaining widespread attention as non-destructive tools, visible to the human eye, that are capable of a real-time and in-situ response. Optical “visual” sensors are expanding researchers’ interests in many chemical contexts and are routinely used for biological, environmental, and medical applications. In this review we provide an overview of trending colorimetric, fluorescent, or dual-mode responsive visual pH sensors. These sensors include molecular synthetic organic sensors, metal organic frameworks (MOF), engineered sensing nanomaterials, and bioengineered sensors. We review different typological chemical entities of visual pH sensors, three-dimensional structures, and signaling mechanisms for pH sensing and applications; developed in the past five years. The progression of this review from simple organic molecules to biological macromolecules seeks to benefit beginners and scientists embarking on a project of pH sensing development, who needs background information and a quick update on advances in the field. Lessons learned from these tools will aid pH determination projects and provide new ways of thinking for cell bioimaging or other cutting-edge in vivo applications.  相似文献   

10.
High sensitivity nanosensors utilize optical, mechanical, electrical, and magnetic relaxation properties to push detection limits of biomarkers below previously possible concentrations. The unique properties of nanomaterials and nanotechnology are exploited to design biomarker diagnostics. High-sensitivity recognition is achieved by signal and target amplification along with thorough pre-processing of samples. In this tutorial review, we introduce the type of detection signals read by nanosensors to detect extremely small concentrations of biomarkers and provide distinctive examples of high-sensitivity sensors. The use of such high-sensitivity nanosensors can offer earlier detection of disease than currently available to patients and create significant improvements in clinical outcomes.  相似文献   

11.
The raising apprehension of volatile organic compound (VOC) exposures urges the exploration of advanced monitoring platforms. Metal–organic frameworks (MOFs) provide many attractive features including tailorable porosity, high surface areas, good chemical/thermal stability, and various host–guest interactions, making them appealing candidates for VOC capture and sensing. To comprehensively exploit the potential of MOFs as sensing materials, great efforts have been dedicated to the shaping and patterning of MOFs for next-level device integration. Among different types of sensors (chemiresistive sensors, gravimetric sensors, optical sensors, etc.), MOFs coupled with optical sensors feature distinctive strength. This review summarized the latest advancements in MOF-based optical sensors with a particular focus on VOC sensing. The subject is discussed by different mechanisms: colorimetry, luminescence, and sensors based on optical index modulations. Critical analysis for each system highlighting practical aspects was also deliberated.

MOF-based optical sensors can achieve volatile organic compound sensing via different mechanisms: colorimetric sensing, luminescent sensing and optical-index modulation sensing.  相似文献   

12.
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.  相似文献   

13.
Electrochemical sensors have drawn significant attention over the last couple of decades because of their ability to improve detection of organic and inorganic analytes found in the field of biotechnology, environmental sciences, medicine, and food quality control. This personal account summarizes the state‐of‐art research carried out in the construction and evaluation of nanostructured metal oxides and zeolite based electrochemical sensors. Metal oxides and zeolite‐based nanomaterials have many unique and extraordinary properties such as tunable redox activity, surface functionalization ability, optimum conductivity, large surface area, biocompatibility and so forth. In this personal account, the current advances in electrochemical sensor applications of metal oxides, zeolite‐based nanomaterials, and their nanocomposites are described for the single and simultaneous determination of organic & inorganic contaminants present in water bodies, physiological bio‐molecules present in human blood & urine samples, and organic contaminants present in food materials.Moreover, concluding section focuses discussion on the future developments and applications of these materials in various emerging technologies.  相似文献   

14.
The use of an array of metal oxide film sensors as a detector for volatile organic compounds in capillary gas chromatography is described. The results of determination of the sensitivity, response time, and linearity range of the analytical signals from sensors are presented; these parameters are compared with similar characteristics of commercial gas chromatographic detectors. An approach is proposed to the identification of organic compounds by the shape and relative size of responses of individual sensors. It is demonstrated that the multisensor detector is applicable to solving typical analytical problems of the quantitative analysis of multicomponent mixtures.  相似文献   

15.
功能纳米器件中组成材料间的电荷转移输运过程对于器件中的物理化学过程以及由此引发的器件功能会有重大影响,因此,深入理解器件工作过程中的电子/离子行为机理对于优化器件功能以及进一步开发纳米材料的应用潜力具有重要意义.传统场效应晶体管对于纳米材料的电输运测量表征反映了载流子在整个器件中的统计行为,但难以检测电荷具体的转移输运过程.同时,由于纳米材料的尺寸和分散性,基于纳米材料的场效应晶体管面临着制备困难、电极/纳米材料接触复杂和制作成本高等问题.因此,本课题组发展了介电力显微术(dielectricforcemicroscopy,DFM)方法并实现了对纳米材料电学性质的无接触、高空间分辨率和快速表征.本文介绍了介电力显微术的基本原理,列举了其在探究一维纳米材料、纳米颗粒以及有机半导体薄膜电学性质上的一些应用实例.这些实例验证了介电力显微术对纳米材料电学性质的表征能力,并展现了这一技术在纳米材料物理化学性质和纳米器件功能研究上的广阔前景.  相似文献   

16.
《Electroanalysis》2018,30(1):2-19
Electrochemical aptasensors appear as promising tools in food analysis, able to provide sensitive, fast and cost‐effective analysis, with the added advantage of portability. Carbon nanomaterials and in particular carbon nanotubes and graphene are among the nanomaterials most often used to build electrochemical aptasensors due to their good electrical conductivity, large surface area and multiple functionalisation possibilities. This review aims to give an overview of the types of carbon nanomaterials and their composites which have been used to enhance the performance of electrochemical aptasensors. Examples are detailed for the biosensors which were tested with real food samples. In these aptasensors, carbon nanomaterials have played different roles, from facilitating the immobilization of high amounts of aptamer and enhancing the electroactive area of the sensors to roles as nanocarrier for signaling probes in amplification schemes or even as electroactive probes generating the output signal. The survey of recent literature shows a positive evolution towards increased aptasensor testing with food samples. However, many challenges remain related to the better characterization of nanomaterials used, clarifying the roles of specific components in multi‐component nanocomposites and widening the types of food matrices and analytes tested with the aptasensors. Although we are still far from knowing when these novel tools will replace classic analytical methods in food analysis, carbon nanomaterials will certainly continue to play an important role in the design of future electrochemical aptasensors for food analysis.  相似文献   

17.
Nitric oxide (NO) and nitrite are of significant importance in clinical/biomedical research and in quality control applications for the food industry. Electrochemical sensing of NO and nitrite has been extensively pursued over the last two years. Efficient interfaces based on functional nanomaterials and bioactive molecules (e.g. metals, metal oxides, carbon-based nanomaterials, conducting polymers, and heme proteins) have been widely explored toward sensor development. Herein, we review the most recent advances in the electrochemical sensing of NO and nitrite, while the critical roles of nanomaterials in the design of advanced electrochemical sensors are highlighted.  相似文献   

18.
This review presents the author’s views on the state-of-art in the electrochemistry of organic compounds, based on the analysis of the data published from 2000 to 2006. The number of publications that consider to one or another extent the electrochemical reactions involving organic compounds constantly increases. The range of problems studied is intimately related with the demands of new technologies. The largest number of publications are devoted to the electrochemical polymerization and the properties of polymeric films on the electrode surface and also to the mechanism of electrode reactions of metal-complex compounds and their properties. The directions such as electrochemistry of nanomaterials and the methods of modification of electrodes are largely associated with the use of electroactive polymers. Fine organic electrosynthesis including the technological developments in the destruction of organic compounds, e. g., for cleaning of waste water, fade to the background. A new direction in this field is the development of amperometric sensors that employ modified electrodes based on electrochemically activated polymeric films.  相似文献   

19.
The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have proposed various non-invasive wearable sensors for rapid and real-time glucose monitoring from human body fluids.Unlike those reviews which discussed performances,detection environments or substrates of the wearable glucose sensor,this review focuses on the sensing nanomaterials since they are the key elements of most wearable glucose sensors.The sensing nanomaterials such as carbon,metals,and conductive polymers are summarized in detail.And also the structural characteristics of different sensing nanomaterials and the corresponding wearable glucose sensors are highlighted.Finally,we prospect the future development requirements of sensing nanomaterials for wearable glucose sensors.This review would give some insights to the further development of wearable glucose sensors and the modern medical treatment.  相似文献   

20.
Pesticides are substances or mixtures used to prevent, control, and reduce harmful organisms, are divided into various groups as carbamates, organophosphates, organochlorines, pyrethroids, fungicides, herbicides, and rodenticides. Uncontrolled and long-term use of pesticides has become an important issue that causes environmental pollution and health problems. Therefore, it is necessary to develop effective sensors to determine pesticides in various samples. Electrochemical techniques stand out with high sensitivity, easy application, low cost, and user-friendliness, among other analysis techniques such as spectroscopic and chromatographic methods. Furthermore, carbon nanomaterials are advantageous materials for the sensor design as modification agents due to their unique electrical, physical, electrocatalytic, and chemical features. In this review, the most significant studies on the electroanalysis of pesticides (e.g., carbaryl, carbofuran, chlorpyrifos, malathion, methyl parathion, paraoxon) using carbon-based nanosensors in the last five years are overviewed. In addition, electrochemical methods and the carbon nanomaterials used in these studies are also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号