首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of aldehyde concentration, incident light intensity, and temperature on the quantum yields of reaction products were studied. Mechanisms for primary and secondary photochemical processes were suggested, and primary quantum yields as well as rate constant ratios were derived. Reversibility of intramolecular γ-hydrogen transfer and disproportionation of the radical pair formed in the reaction of an excited triplet and ground state molecule were shown to provide important pathways for radiationless decay of the triplet state.  相似文献   

2.
The photolysis was investigated at 313 nm wavelength, 253–529 K temperatures, and 4 × 10?11-2 × 10?9 mol·photon/cm2·sec light intensities by determining the quantum yields of 20 reaction products. Primary quantum yields for the seven primary processes and rate constant ratios, rate constants, and Arrhenius parameters for secondary processes were derived on the basis of the suggested reaction scheme. The dependence of the quantum yields of the four major primary processes on experimental conditions was established.  相似文献   

3.
High resolution kinetic energy release spectra were obtained for C(+) and O(+) from CO multiphoton ionization followed by dissociation of CO(+). The excitation was through the CO (B (1)Sigma(+)) state via resonant two-photon excitation around 230 nm. A total of 5 and 6 photons are found to contribute to the production of carbon and oxygen cations. DC slice and Megapixel ion imaging techniques were used to acquire high quality images. Major features in both O(+) and C(+) spectra are assigned to the dissociation of some specific vibrational levels of CO(+)(X (2)Sigma(+)). The angular distributions of C(+) and O(+) are very distinct and those of various features of C(+) are also different. A dramatic change of the angular distribution of C(+) from dissociation of CO(+)(X (2)Sigma(+), nu(+) = 1) is attributed to an accidental one-photon resonance between CO(+)(X (2)Sigma(+), nu(+) = 1) and CO(+)(B (2)Sigma(+), nu(+) = 0) and explained well by a theoretical model. Both kinetic energy release and angular distributions were used to reveal the underlying dynamics.  相似文献   

4.
Dynamics of transformations of excited states and active transient species generated in the photolysis of nitrated 1,2-dihydroquinolines (N-DHQ) has been studied by femto- and nanosecond laser pulse photolysis. Spectral and kinetic parameters of primary photophysical and photochemical processes have been determined, and their dependence on the substituent position at the aromatic ring of 1,2-dihydroquinoline (DHQ) and on the wavelength of excitation light has been established. The lifetime of the excited singlet state S1 in N-DHQ is ca. 100 and 500 fs for 8- and 6-nitro-substituted DHQ, respectively, which is shorter in comparison with DHQ without the nitro group by a factor of 104 and more. The major decay channel of the S1 state is the successive formation of three transient species with lifetimes of 0.5 to 16 ps. A triplet state is generated only upon excitation of the short-wavelength band by UV light. The quantum yield of the triplet state depends on the structure of N-DHQ.  相似文献   

5.
The 355 nm laser flash photolysis of argon-saturated pH 8 phosphate buffer solutions of the fluoroquinolone antibiotic flumequine produces a transient triplet state with a maximum absorbance at 575 nm where the molar absorptivity is 14,000 M(-1) cm(-1). The quantum yield of triplet formation is 0.9. The transient triplet state is quenched by various Type-1 photodynamic substrates such as tryptophan (TrpH), tyrosine, N-acetylcysteine and 2-deoxyguanosine leading to the formation of the semireduced flumequine species. This semireduced form has been readily identified by pulse radiolysis of argon-saturated pH 8 buffered aqueous solutions by reaction of the hydrated electrons and the CO2*- radicals with flumequine. The absorption maximum of the transient semireduced species is found at 570 nm with a molar absorptivity of 2,500 M(-1) cm(-1). In argon-saturated buffered solutions, the semireduced flumequine species formed by the reaction of the flumequine triplet with TrpH stoichiometrically reduces ferricytochrome C (Cyt Fe3+) under steady state irradiation with ultraviolet-A light. In the presence of oxygen, O2*- is formed but the photoreduction of Cyt Fe3+ by O2*- competes with an oxidizing pathway which involves photo-oxidation products of TrpH.  相似文献   

6.
The delayed luminescence was applied to detect the intermediate processes of the excitedstate decay in the selectively excited phycobiliproteins. Phosphorescence spectra of the five types of phycobiliproteins, R-PE, CPC, APC, R-PC, PEC were reported in this article. The five phycobiliproteins showed different phosphorescence yields, the sequence of which was the same as that of the singlet oxygen yields. Based on the observation, it can be concluded that each of the chromophores possesses a characteristic phosphorescence emission. The delayed luminescence spectra of APC at different aggregation states (trimer, monomer and denatured APC) are researched. The lower aggregation APC showed less phosphorescence because of relative loose structures and less interaction with the surrounding proteins, while the denatured APC showed delayed fluorescence instead of phosphorescence because of triplet-triplet annihilation.  相似文献   

7.
Studies of UV irradiatated tetraphenylmethane crystals by electron paramagnetic resonance and electronic optical spectroscopy are presented. The primary processes of photochemical reactions are proposed as: (1) (C6H5)4C + hv → (C6H5)3C· + C6H5· and (2) 2C6H5· → C6H5C6H5. No similar effect occurs with other tetrapheny compounds, triphenylmethane, or diphenylmethane. The steric strain in Ph4C and effective resonance in Ph3C· may be responsible for the high q of the above photochemical reactions.  相似文献   

8.
The influence of the oxygen pressure on the photochemical oxidation of phenol is investigated. It is shown that raising the oxygen pressure from 0.1 to 0.7 MPa leads to an increase in the photochemical oxidation of phenol by a factor of approximately 3.7.  相似文献   

9.
10.
We compare the influence of the dilution of silane and disilane in nitrogen during laser photodissociation to produce silicon at 193 nm, at room temperature in a static reaction chamber. The experimental results show that the conversion of the reactant gas and its deposition yield can be controlled by varying adequately the extent of dilution. So, two total pressure regions have been observed, independent of the dilution: below 40–50 Torr, the variations of stable species concentration are very important but above these values the variation in the dilution rate has practically no effects on their concentrations. In the first region, during the silane photodissociation at the initial reactant pressure below 5 Torr, the conversion of silane increases with increasing dilution, and at higher initial reactant pressure the conversion of silane tends to rise only a little. In contrast, at any initial reactant pressure, the conversion of disilane during its photodecomposition decreases with increasing dilution. In the second region, the concentration of each stable gaseous species tends to reach a pressure stationary-state. For both the silane and disilane photodissociation, the deposition yield of silicon increases with decreasing the initial reactant gas pressure and it reaches a pressure stationary-state above 50% dilution; but in all the cases, it is greater in disilane photolysis than that of silane. A simple kinetic model is proposed for which the computed results predict the time-evolution of gas composition and amount of silicon deposited.  相似文献   

11.
12.
Methane photolysis has been performed at the two Vacuum UltraViolet (VUV) wavelengths, 121.6 nm and 118.2 nm, via a spectrally pure laser pump-probe technique. The first photon is used to dissociate methane (either at 121.6 nm or at 118.2 nm) and the second one is used to ionise the CH(2) and CH(3) fragments. The radical products, CH(3)(X), CH(2)(X), CH(2)(a) and C((1)D), have been selectively probed by mass spectrometry. In order to quantify the fragment quantum yields from the mass spectra, the photoionisation cross sections have been carefully evaluated for the CH(2) and CH(3) radicals, in two steps: first, theoretical ab initio approaches have been used in order to determine the pure electronic photoionisation cross sections of CH(2)(X) and CH(2)(a), and have been rescaled with respect to the measured absolute photoionisation cross section of the CH(3)(X) radical. In a second step, in order to take into account the substantial vibrational energy deposited in the CH(3)(X) and CH(2)(a) radicals, the variation of their cross sections near threshold has been simulated by introducing the pertinent Franck-Condon overlaps between neutral and cation species. By adding the interpolated values of CH quantum yields measured by Rebbert and Ausloos [J. Photochem., 1972, 1, 171-176], a complete set of fragment quantum yields has been derived for the methane photodissociation at 121.6 nm, with carefully evaluated 1σ uncertainties: Φ[CH(3)(X)] = 0.42 ± 0.05, Φ[CH(2)(a)] = 0.48 ± 0.05, Φ[CH(2)(X)] = 0.03 ± 0.08, Φ[CH(X)] = 0.07 ± 0.01. These new data have been measured independently of the H atom fragment quantum yield, subject to many controversies in the literature. From our results, we evaluate Φ(H) = 0.55 ± 0.17 at 121.6 nm. The quantum yields for the photolysis at 118.2 nm differ notably from those measured at 121.6 nm, with a substantial production of the CH(2)(X) fragment: Φ[CH(3)(X)] = 0.26 ± 0.04, Φ[CH(2)(a)] = 0.17 ± 0.05, Φ[CH(2)(X)] = 0.48 ± 0.06, Φ[CH(X)] = 0.09 ± 0.01, Φ(H) = 1.31 ± 0.13. These new data should bring reliable and essential inputs for the photochemical models of the Titan atmosphere.  相似文献   

13.
Excitation and pressure dependence of fluorescence and phosphorescence quantum yields has been reinvestigated in detail for quinoxaline in the static vapor phase at pressure range from 10(-3) to 10(-1) Torr. It is shown that the ratio of the nonradiative rate from T(1)(pi, pi*) to the rate of the S(1)(n, pi*) approximately -->T(1)(pi, pi*) intersystem crossing decreases with increasing the excitation energy in the S(0)-->S(1) excitation region. The phosphorescence quantum yield measured as a function of the excitation energy at low pressure shows an abrupt decrease on going the excitation from S(0)-->S(1) to S(0)-->S(2), indicating the slow vibrational energy redistribution between the S(1) levels optically populated and those populated through the internal conversion from S(2) to S(1).  相似文献   

14.
15.
The kinetics of photochemical reactions in aqueous polymer-salt systems containing ammonium heptamolybdate, dodecatungstate, or metavanadate and polyvinyl alcohol or polyvinylpyrrolidone was studied by measurements of photoinduced electrode potential difference. The rate of primary accumulation of reduced d metal forms was evaluated for different systems. Possible reasons for complex oscillatory processes in the systems were analyzed. Comparative data were obtained for compositions containing polyoxometallate shaped like buckyball:(NH4)42[Mo72VIMo60VO372(HCOO)30(H2O)72] · 30HCOONH4 · 250H2O. UV irradiation of this system caused the oxidation of molybdenum(V). Original Russian Text ? A.A. Ostroushko, M.Yu. Sennikov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 1, pp. 127–131.  相似文献   

16.
The mechanism of photochemistry in the mesopause region entails a chemical oscillator forced by solar short-wave radiation. A model with periodic forcing between day and night conditions produces nonlinear dynamics including period-doubling bifurcations and chaos. The photochemical mechanism represents a network involving positive and negative feedbacks that can be examined by methods of stoichiometric network analysis. We use these methods to decompose the network into irreducible subnetworks and then apply linear stability analysis to find all possible sources of oscillatory instabilities in the mesopause chemistry. These oscillators are classified according to topological features in their reaction networks and phase shifts of oscillating species. We subsequently compare phase shifts indicated by the network analysis with those from direct simulations to identify a specific subnetwork in the mechanism underlying the complex oscillatory dynamics observed in earlier simulations.  相似文献   

17.
18.
Phosphorescence from polyolefins was studied from the aspects of excitation and emission wavelength and lifetime. Effects of photochemical oxidation on polypropylene phosphorescence are discussed in contrast to the effects of thermal oxidation.  相似文献   

19.
《Chemical physics letters》1987,137(4):361-364
Rotational population distributions of NO photofragments in the second vibrational excited state from the photofragmentation of NO2 at 337 nm are evaluated numerically via a kinematic distribution function. The kinematic constraints on the final state interaction in the photofragmentation process of NO2 reveal a definitive mechanism of predissociation when the numerically calculated distributions are compared with experimental data. The excited 2B2 state at 29665 cm−1 predissociates into the continuum of the ground 2A1 electronic state and the anomalous rotational population distributions result from the recoil of oxygen atoms along two crossing points at 3.678 eV between the 2B2 and 2A1 potential energy surfaces. Although these two surfaces intersect on a double cone, the narrow ranges of recoil angles in the predissociation of NO2 follow strictly after the conservation of energy and the Franck-Condon principle.  相似文献   

20.
The interaction of the low-pressure flame of a 2H2-O2 mixture with a quartz reactor surface was studied by the resonance fluorescence technique. The results confirmed the fundamental statement of N. N. Semenov’s theory concerning chain propagation in the gas and termination on the surface in the kinetic region of chain termination (quadratic decay in the heterogeneous negative chain interaction) and in the diffusion region (linear decay). The kinetic curves observed in the kinetic and diffusion chain termination regions on the wall were well matched using N. N. Semenov’s theory, taking into account the heterogeneous catalytic chain initiation and interaction processes occurring on the wall with a variable “rate constant.” The interaction of chains on the wall markedly retards ignition in the gas in the kinetic region and has almost no influence on chain propagation in the gas in the diffusion region of the heterogeneous chain termination. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1301–1308, August, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号