首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collapse pressure of insoluble monolayers is a property determined from surface pressure/area isotherms. Such isotherms are commonly measured by a Langmuir film balance or a drop shape technique using a pendant drop constellation (ADSA-PD). Here, a different embodiment of a drop shape analysis, called axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD) is used as a film balance. It is shown that ADSA-CSD has certain advantages over conventional methods. The ability to measure very low surface tension values (e.g., <2 mJ/m2), an easier deposition procedure than in a pendant drop setup, and leak-proof design make the constrained sessile drop constellation a better choice than the pendant drop constellation in many situations. Results of compression isotherms are obtained on three different monolayers: octadecanol, dipalmitoyl-phosphatidyl-choline (DPPC), and dipalmitoyl-phosphatidyl-glycerol (DPPG). The collapse pressures are found to be reproducible and in agreement with previous methods. For example, the collapse pressure of DPPC is found to be 70.2 mJ/m2. Such values are not achievable with a pendant drop. The collapse pressure of octadecanol is found to be 61.3 mJ/m2, while that of DPPG is 59.0 mJ/m2. The physical reasons for these differences are discussed. The results also show a distinctive difference between the onset of collapse and the ultimate collapse pressure (ultimate strength) of these films. ADSA-CSD allows detailed study of this collapse region.  相似文献   

2.
Drop retraction methods are popular means of measuring the interfacial tension between immiscible polymers. Experiments show that two different drop retraction methods, imbedded fiber retraction (IFR) and deformed drop retraction (DDR), give inconsistent results when a surfactant is present on the surface of the drop. These inconsistencies are deemed to be due to dilution of the surfactant and due to gradients in interfacial concentration of surfactant along the drop surface. This physical picture is quantified for the simple case of a Newtonian drop in a Newtonian matrix, with an insoluble, nondiffusive surfactant at the interface. The drop is deformed in computational fluid dynamics simulations by shearing the matrix, and then allowed to retract. Dilution and interfacial tension gradients effects are found to be especially large at the early stages of retraction, making IFR unsuitable for measuring the interfacial tension of surfactant-laden interfaces. The effects of surfactant dilution and gradients are found to persist even at late stages of retraction, causing the DDR method to underestimate the equilibrium interfacial tension significantly. The largest underestimates occur when the drop viscosity is lower than the matrix viscosity.  相似文献   

3.
The Axisymmetric Drop Shape Analysis (ADSA) has been used to study the surface pressure/area isotherms of insoluble surfactant monolayers. The continuous measurement of surface tension as a function of surface area by increasing and decreasing the drop volume allows to investigate the phase transitions in monolayers. The isotherms of two phospholipids, dipalmitoyl phosphatidyl choline (DPPC) and dimyristoyl phosphatidyl ethanolamine (DMPE), show good agreement with those measured by using a conventional Langmuir-Blodgett film balance, except in the coexistence region. The observed disagreements are discussed in terms of differences in compression rate, curvature of the surface and effect of impurities. Evidence of possible geometric effects on monolayer domain formation and growth is given on the basis of BAM images.Due to the small total surface area, the ADSA technique provides advantages as regards homogeneity of temperature, surface pressure, surface concentration and the symmetry of area changes.  相似文献   

4.
A new method combining axisymmetric drop shape analysis (ADSA) and a captive bubble (CB) is proposed to study the effect of surfactant on interfacial gas transfer. In this method, gas transfer from a static CB to the surrounding quiescent liquid is continuously recorded for a short period (i.e., 5 min). By photographical analysis, ADSA-CB is capable of yielding detailed information pertinent to the surface tension and geometry of the CB, e.g., bubble area, volume, curvature at the apex, and the contact radius and height of the bubble. A steady-state mass transfer model is established to evaluate the mass transfer coefficient on the basis of the output of ADSA-CB. In this way, we are able to develop a working prototype capable of simultaneously measuring dynamic surface tension and interfacial gas transfer. Other advantages of this method are that it allows for the study of very low surface tensions (<5 mJ/m2) and does not require equilibrium of gas transfer. Consequently, reproducible experimental results can be obtained in a relatively short time. As a demonstration, this method was used to study the effect of lung surfactant on oxygen transfer. It was found that the adsorbed lung surfactant film shows a retardation effect on oxygen transfer, similar to the behavior of a pure DPPC film. However, this retardation effect at low surface tensions is less than that of a pure DPPC film.  相似文献   

5.
A new constant pressure pendant-drop penetration surface balance has been developed combining a pendant-drop surface balance, a rapid-subphase-exchange technique, and a fuzzy logic control algorithm. Beside the determination of insoluble monolayer compression-expansion isotherms, it allows performance of noninvasive kinetic studies of the adsorption of surfactants added to the new subphase onto the free surface and of the adsorption/penetration/reaction of the former onto/into/with surface layers, respectively. The interfacial pressure pi is a fundamental parameter in these studies: by working at constant pi one controls the height of the energy barrier to adsorption/penetration and can select different regimes and steps of the adsorption/penetration process. In our device a solution drop is formed at the tip of a coaxial double capillary, connected to a double microinjector. Drop profiles are extracted from digital drop micrographs and fitted to the equation of capillarity, yielding pi, the drop volume V, and the interfacial area A. pi is varied changing V (and hence A) with the microinjector. Control is based on a case-adaptable modulated fuzzy-logic PID algorithm able to maintain constant pi (or A) under a wide range of experimental conditions. The drop subphase liquid can be exchanged quantitatively by the coaxial capillaries. The adsorption/penetration/reaction kinetics at constant pi are then studied monitoring A(t), i.e., determining the relative area change necessary at each instant to compensate the pressure variation due to the interaction of the surfactant in the subsurface with the surface layer. A fully Windows-integrated program manages the whole setup. Examples of experimental protein adsorption and monolayer penetration kinetics are presented.  相似文献   

6.
The primary role of lung surfactant is to reduce surface tension at the air–liquid interface of alveoli during respiration. Axisymmetric drop shape analysis (ADSA) was used to study the effect of poly(ethylene glycol) (PEG) on the rate of surface film formation of a bovine lipid extract surfactant (BLES), a therapeutic lung surfactant preparation. PEG of molecular weights 3350; 8000; 10,000; 35,000; and 300,000 in combination with a BLES mixture of 0.5 mg/mL was studied. The adsorption rate of BLES alone at 0.5 mg/mL was much slower than that of a natural lung surfactant at the same concentration; more than 200 s are required to reach the equilibrium surface tension of 25 mJ/m2. PEG, while not surface active itself, enhances the adsorption of BLES to an extent depending on its concentration and molecular weight. These findings suggest that depletion attraction induced by higher molecular weight PEG (in the range of 8000 to 35,000) may be responsible for increasing the adsorption rate of BLES at low concentration. The results provide a basis for using PEG as an additive to BLES to reduce its required concentration in clinical treatment, thus reducing the cost for surfactant replacement therapy.  相似文献   

7.
8.
光电化学方法在铜缓蚀剂作用机理研究中的应用   总被引:4,自引:0,他引:4  
徐群杰  周国定 《化学通报》2002,65(6):422-427
本文综述了笔者实验室采用光电化学方法在铜缓蚀剂作用机理研究中的应用情况,采用此方法不仅可对铜缓蚀剂的缓蚀性能进行评定,而且还可对缓蚀剂的作用机理级缓蚀协同效应与作用机理进行研究,可以得到其它一些常规电化学方法及表面分析所不能得到的一些信息,此方法不失为一种研究缓蚀剂作用机进的好方法。  相似文献   

9.
正负离子表面活性剂与两性表面活性剂的相互作用   总被引:3,自引:0,他引:3  
本文研究正负离子表面活性剂与两性表面活性剂混合水溶液的表面性质, 以及两性表面活性剂对正负离子裘面活性剂溶解度的影响。结果表明: (1) 两性表面活性剂的加溶作用,有助于正负离子表面活性剂的溶解; (2) 加入两性表面活性剂的量适当, 混合溶液基本保持原正负离子表面活性剂的表面活性; (3) 正负离子表面活性剂与两性表面活性剂在表面层和胶团中分子间的相互作用比正负离子表面活性剂与非离子表面活性剂分子间的相互作用稍强HC-FC正负; 离子表面活性剂与两性表面活性剂混合体系在表面层中有可能形成双分子或多分子层结构。  相似文献   

10.
Depending on the bulk composition, adsorption layers formed from mixed protein/surfactant solutions contain different amounts of protein. Clearly, increasing amounts of surfactant should decrease the amount of adsorbed proteins successively. However, due to the much larger adsorption energy, proteins are rather strongly bound to the interface and via competitive adsorption surfactants cannot easily displace proteins. A thermodynamic theory was developed recently which describes the composition of mixed protein/surfactant adsorption layers. This theory is based on models for the single compounds and allows a prognosis of the resulting mixed layers by using the characteristic parameters of the involved components. This thermodynamic theory serves also as the respective boundary condition for the dynamics of adsorption layers formed from mixed solutions and their dilational rheological behaviour. Based on experimental studies with milk proteins (β-casein and β-lactoglobulin) mixed with non-ionic (decyl and dodecyl dimethyl phosphine oxide) and ionic (sodium dodecyl sulphate and dodecyl trimethyl ammonium bromide) surfactants at the water/air and water/hexane interfaces, the potential of the theoretical tools is demonstrated.The displacement of pre-adsorbed proteins by subsequently added surfactant can be successfully studied by a special experimental technique based on a drop volume exchange. In this way the drop profile analysis can provide tensiometry and dilational rheology data (via drop oscillation experiments) for two adsorption routes — sequential adsorption of the single compounds in addition to the traditional simultaneous adsorption from a mixed solution. Complementary measurements of the surface shear rheology and the adsorption layer thickness via ellipsometry are added in order to support the proposed mechanisms drawn from tensiometry and dilational rheology, i.e. to show that the formation of mixed adsorption layer is based on a modification of the protein molecules via electrostatic (ionic) and/or hydrophobic interactions by the surfactant molecules and a competitive adsorption of the resulting complexes with the free, unbound surfactant. Under certain conditions, the properties of the sequentially formed layers differ from those formed simultaneously, which can be explained by the different locations of complex formation.  相似文献   

11.
The in vitro adsorption kinetics of lung surfactant at air-water interfaces is affected by both the composition of the surfactant preparations and the conditions under which the assessment is conducted. Relevant experimental conditions are surfactant concentration, temperature, subphase pH, electrolyte concentration, humidity, and gas composition of the atmosphere exposed to the interface. The effect of humidity on the adsorption kinetics of a therapeutic lung surfactant preparation, bovine lipid extract surfactant (BLES), was studied by measuring the dynamic surface tension (DST). Axisymmetric drop shape analysis (ADSA) was used in conjunction with three different experimental methodologies, i.e., captive bubble (CB), pendant drop (PD), and constrained sessile drop (CSD), to measure the DST. The experimental results obtained from these three methodologies show that for 100% relative humidity (RH) at 37 degrees C the rate of adsorption of BLES at an air-water interface is substantially slower than for low humidity. It is also found that there is a difference in the rate of surface tension decrease measured from the PD and CB/CSD methods. These experimental results agree well with an adsorption model that considers the combined effects of entropic force, electrostatic interaction, and gravity. These findings have implications for the development and evaluation of new formulations for surfactant replacement therapy.  相似文献   

12.
The formation of mixed protein/surfactant adsorption layers is studied by the drop profile analysis tensiometry equipped with a special tool for drop volume exchange during experiments. This arrangement allows investigating in the traditional way by simultaneous adsorption from a mixed solution and also by a subsequent adsorption of the protein followed by surfactant. The experiments are performed for β-casein as the protein in the presence of different amounts of the non-ionic surfactant C12DMPO. The surface layers formed via the two routes show similar equilibrium surface properties. However, the dynamics of desorption of the protein complexes into the pure buffer solution deviate significantly, which is explained by the different locations of the protein/surfactant interaction. Although in both cases the complex formation is based on hydrophobic interaction, the accessibility of the hydrophobic parts of pre-adsorbed proteins due to unfolding is more favourable by the surfactant than in the solution bulk. Therefore, the amount desorbed from surface layers formed from mixed solutions is significantly less as compared to the displacement of proteins by subsequently injected surfactants interacting at the surface.  相似文献   

13.
Shortage or malfunction of pulmonary surfactant in alveolar space leads to a critical condition termed respiratory distress syndrome (RDS). Surfactant replacement therapy, the major method to treat RDS, is an expensive treatment. In this paper, the effect of poly(ethylene glycol) (PEG) to improve dynamic surface activity of a bovine lipid extract surfactant (BLES) was studied by axisymmetric drop shape analysis (ADSA) and a captive bubble method. The activity of BLES+PEG mixtures was compared to that of a natural surfactant containing surfactant proteins A and D. When PEG was added into BLES mixtures, the surface tension hysteresis of BLES films was minimized when the films were compressed by more than 50%. PEG also helps to quickly restore surfactant films after film collapse. Thus, as far as surface tension effects go, the findings suggest that PEG might be used as a substitute for surfactant-associated protein SP-A in therapeutic surfactant products, and might also be used to reduce the amount of BLES required in clinical applications.  相似文献   

14.
Adsorption of pulmonary surfactant to an air-water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value.  相似文献   

15.
利用动电位极化方法 ,研究了有机膦酸醇酯类缓蚀剂 (YKI_0 5 )对 90 7A钢在天然海水中的缓蚀行为 .实验表明 :静态海水中 ,浓度为 30 0mg/L的YKI_0 5缓蚀剂能在 90 7A钢表面形成稳定的缓蚀膜层 ,是一负催化阴极型缓蚀剂 ,于实验周期内其对 90 7A钢的缓蚀效率可稳定在 90 %左右 ;在周期性间歇浸没情况下 ,此种缓蚀剂所形成的膜层很不稳定 ,随着间浸次数的增加 ,膜层破损程度愈甚 ,缓蚀效果减弱 ,缓蚀膜对 90 7A钢表面仅仅是个覆盖层 ,起到抑制了部分阴、阳极反应的作用 ,从而可将缓蚀机制归结为覆盖效应  相似文献   

16.
Pulmonary surfactant is a mixed lipid protein substance of defined composition that self-assembles at the air-lung interface into a molecular film and thus reduces the interfacial tension to close to zero. A very low surface tension is required for maintaining the alveolar structure. The pulmonary surfactant film is also the first barrier for airborne particles entering the lung upon breathing. We explored by frequency modulation Kelvin probe force microscopy (FM-KPFM) the structure and local electrical surface potential of bovine lipid extract surfactant (BLES) films. BLES is a clinically used surfactant replacement and here served as a realistic model surfactant system. The films were distinguished by a pattern of molecular monolayer areas, separated by patches of lipid bilayer stacks. The stacks were at positive electrical potential with respect to the surrounding monolayer areas. We propose a particular molecular arrangement of the lipids and proteins in the film to explain the topographic and surface potential maps. We also discuss how this locally variable surface potential may influence the retention of charged or polar airborne particles in the lung.  相似文献   

17.
Drop profile analysis tensiometry is applied to study the adsorption dynamics of phospholipids, proteins and phospholipid/protein mixtures at liquid/liquid interfaces. Measurements of the dynamic interfacial tension of phospholipid layers give information on the adsorption mechanism and the structure of the adsorption layer. The equilibrium and dynamic adsorption of pure protein solutions, i.e. human serum album (HSA), beta-lactoglobulin (beta-LG), beta-casein (beta-CA), can be explained well by the thermodynamic model of Frumkin and the diffusion-controlled adsorption theory. The adsorption behavior from mixed phospholipid/protein solutions was also investigated in terms of dynamic interfacial tensions. Interestingly, a "skin-like" folded film of pure protein or phospholipid/protein complex layers can be observed at curved surfaces at the water/oil interfaces. The addition of phospholipids accelerates the formation of the folded structure at the drop surface through co-adsorption of proteins.  相似文献   

18.
In pulmonary tuberculosis, Mycobacterium tuberculosis bacteria reside in the alveoli and are in close proximity with the alveolar surfactant. Mycolic acid in its free form and as cord factor, constitute the major lipids of the mycobacterial cell wall. They can detach from the bacteria easily and are known to be moderately surface active. We hypothesize that these surface-active mycobacterial cell wall lipids could interact with the pulmonary surfactant and result in lung surfactant dysfunction. In this study, the major phospholipid of the lung surfactant, dipalmitoylphosphatidylcholine (DPPC) and binary mixtures of DPPC:phosphatidylglycerol (PG) in 9:1 and 7:3 ratios were modelled as lung surfactant monolayers and the inhibitory potential of mycolic acid and cord factor on the surface activity of DPPC and DPPC:PG mixtures was evaluated using Langmuir monolayers. The mycobacterial lipids caused common profile changes in all the isotherms: increase in minimum surface tension, compressibility and percentage area change required for change in surface tension from 30 to 10 mN/m. Higher minimum surface tension values were achieved in the presence of mycolic acid (18.2 ± 0.7 mN/m) and cord factor (13.28 ± 1.2 mN/m) as compared to 0 mN/m, achieved by pure DPPC film. Similarly higher values of compressibility (0.375 ± 0.005 m/mN for mycolic acid:DPPC and 0.197 ± 0.003 m/mN for cord factor:DPPC monolayers) were obtained in presence of mycolic acid and cord factor. Thus, mycolic acid and cord factor were said to be inhibitory towards lung surfactant phospholipids. Higher surface tension and compressibility values in presence of tubercular lipids are suggestive of an unstable and fluid surfactant film, which will fail to achieve low surface tensions and can contribute to alveolar collapse in patients suffering from pulmonary tuberculosis. In conclusion a biophysical inhibition of lung surfactant may play a role in the pathogenesis of tuberculosis and may serve as a target for the development of new drug loaded surfactants for this condition.  相似文献   

19.
An illustrative example is given to show how various vibrational spectroscopy techniques coupled with two-dimensional (2D) correlation analysis can be effectively utilized in the development of a novel and functional material. Surface-hydrophilic elastomer latex (SHEL) is a material exhibiting rather unusual permanently water-wettable surface feature despite having a soft and rubbery bulk property, which can be successfully analyzed with vibrational spectroscopy. 2D photoacoustic (PAS) IR spectra of a SHEL film indicate the localized surface segregation of long-chain ethoxylate moiety of the oligomeric surfactant used in the preparation of this material. The accumulation of the hydrophilic long-chain ethoxylate produces the high energy polar surface over the hydrophobic bulk phase of SBR copolymer. The persistence of very low water contact angle, even after repeated washing of a SHEL film with an excess amount of water, indicates permanent covalent attachment of long-chain ethoxylate group to the SBR copolymer. 2D Raman spectra generated from the process monitoring of the emulsion copolymerization of SHEL reveal the mechanism of the covalent attachment of long-chain ethoxylate. The reaction involves a separate step of oleyl moiety of the block surfactant reacting with 1,3-butadiene prior to the onset of copolymerization to produce the SBR latex product.  相似文献   

20.
The dynamic surface elasticity, dynamic surface tension, and ellipsometric angles of mixed aqueous poly(diallyldimethylammonium chloride)/sodium dodecylsulfate solutions (PDAC/SDS) have been measured as a function of time and surfactant concentration. This system represents a typical example of polyelectrolyte/surfactant complex formation and subsequent aggregation on the nanoscale. The oscillating barrier and oscillating drop methods sometimes led to different results. The surface viscoelasticity of mixed PDAC/SDS solutions are very close to those of mixed solutions of sodium polystyrenesulfonate and dodecyltrimethylammonium bromide but different from the results for some other polyelectrolyte/surfactant mixtures. The abrupt drop in surface elasticity when the surfactant molar concentration approaches the concentration of charged polyelectrolyte monomers is caused by the formation of microparticles in the adsorption layer. Aggregate formation in the solution bulk does not influence the surface properties significantly, except for a narrow concentration range where the aggregates form macroscopic flocks. The mechanism of the observed relaxation process is controlled by the mass exchange between the surface layer and the flocks attached to the liquid surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号