首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four Lewis acidic silver phosphane complexes partnered with [1-closo-CB(11)H(12)](-) and [1-closo-CB(11)H(6)Br(6)](-) have been synthesised and studied by solution NMR and solid-state X-ray diffraction techniques. In the complex [Ag(PPh(3))(CB(11)H(12))] (1), the silver is coordinated with the carborane by two stronger 3c-2e B-H-Ag bonds, one weaker B-H-Ag interaction and a very weak Ag.C(arene) contact in the solid state. In solution, the carborane remains closely connected with the [Ag(PPh(3))](+) fragment, as evidenced by (11)B chemical shifts. Complex 2 [Ag(PPh(3))(2)(CB(11)H(12))](2) adopts a dimeric motif in the solid state, each carborane bridging two Ag centres. In solution at low temperature, two distinct complexes are observed that are suggested to be monomeric [Ag(PPh(3))(2)][CB(11)H(12)] and dimeric [Ag(PPh(3))(2)(CB(11)H(12))](2). With the more weakly coordinating anion [CB(11)H(6)Br(6)](-) and one phosphane, complex 3 [Ag(PPh(3))(CB(11)H(6)Br(6))] is isolated. Complex 4, [Ag(PPh(3))(2)(CB(11)H(6)Br(6))], has been characterised spectroscopically. All of the complexes have been assessed as Lewis acids in the hetero-Diels-Alder reaction of N-benzylideneaniline with Danishefsky's diene. Exceptionally low catalyst loadings for this Lewis acid catalysed reaction are required (0.1 mol %) coupled with turnover frequencies of 4000 h(-1) (quantitative conversion to product after 15 minutes using 3 at room temperature). Moreover, the reaction does not occur in rigorously dry solvent as addition of a substoichiometric amount of water (50 mol %) is necessary for turnover of the catalyst. It is suggested that a Lewis assisted Br?nsted acid is formed between the water and the silver. The effect of changing the counterion to [BF(4)](-), [OTf](-) and [ClO(4)](-) has also been studied. Significant decreases in reaction rate and final product yield are observed on changing the anion from [CB(11)H(6)Br(6)](-), thus demonstrating the utility of weakly coordinating carborane anions in organic synthesis.  相似文献   

2.
The reactions of [N(3)P(3)Cl(6)] with one, two, or three equivalents of the difunctional 1,2-closo-carborane C(2)B(10)H(10)[CH(2)OH](2) and K(2)CO(3) in acetone have been investigated. These reactions led to the new spiro-closo-carboranylphosphazenes gem-[N(3)P(3)Cl(6-2n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (1), 2 (2)) and the first fully carborane-substituted phosphazene gem-[N(3)P(3)[(OCH(2))(2)C(2)B(10)H(10)](3)] (3). A bridged product, non-gem-[N(3)P(3)Cl(4)[(OCH(2))(2)C(2)B(10)H(10)]] (4), was also detected. The reaction of the well-known spiro derivatives [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)] and [N(3)P(3)Cl(4)(O(2)C(12)H(8))] with the same carborane-diol and K(2)CO(3) in acetone gave the new compounds gem-[N(3)P(3)(O(2)C(12)H(8))(3-n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (5) or 2 (6), respectively), without signs of intra- or intermolecularly bridged species. Upon treatment with NEt(3) in acetone, compound 5 was converted into the corresponding nido-carboranylphosphazene. However, the reaction of gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5) with NEt(3) in ethanol instead of acetone proceeded in a different manner to give the new compound (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7). For compounds with two 2,2'-dioxybiphenyl units, gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5), (NHEt(3))[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(9)H(10)]] (8), and (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7), a mixture of different stereoisomers may be expected. However, for 5 and 7 only the meso compounds seem to be formed, with the same (R,S)-configuration as in the precursor [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)]. The reaction of 5 to give 8 seems to proceed with a change of configuration at one phosphorus center, giving a racemic mixture. The crystal structures of the nido-carboranylphosphazenes 7 and 8 have been confirmed by X-ray diffraction methods.  相似文献   

3.
Addition of the carbene 1,3-dimesitylimidazol-2-ylidene (IMes) to a toluene solution of Ag[closo-CB(11)H(12)] results in the formation of the complex [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)], the anionic component of which contains two silver(I) centers bridged by two carboranes in addition to one terminally bound carborane on each metal, in the solid-state. Comparison of the observed (11)B[(1)H] NMR chemical shifts of [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)] or Ag[closo-CB(11)H(12)] with [NBu(4)][closo-CB(11)H(12)] in CD(2)Cl(2) demonstrates that the silver ion interacts significantly with the cage in solution. Theoretical investigations using the ab initio/GIAO/NMR method of [closo-CB(11)H(12)](-) and Na[closo-CB(11)H(12)] as model geometries for the silver salts support experimental evidence for these Ag...[BH] interactions in solution.  相似文献   

4.
Photochemical reaction of [Rh(eta-C(5)H(5))(C(2)H(4))(2)] (5) with alkenyl benzene derivatives PhC(R(1))=CHR(2) results in the formation of four types of cyclopentadienylrhodium complexes: the mononuclear ethylene eta(2)-alkenylbenzene complexes [Rh(eta-C(5)H(5))(eta-C(2)H(4))(eta(2)-PhC(R(1))=CHR(2))] 9 a (R(1)=H, R(2)=Ph), 9 b (R(1)=Ph, R(2)=H), 9 c (R(1)=CH(3), R(2)=H), the mononuclear eta(4)-alkenylbenzene complex [Rh(eta-C(5)H(5))[beta,alpha,1,2-eta-C(6)H(5)C(Ph)=CH(2)]] (10), the dinuclear mu-eta(4):eta(4)-alkenylbenzene complex [anti-[Rh(eta-C(5)H(5))](2)[mu-beta,alpha,1,2-eta:3,4,5,6-eta-C(6)H(5)C(Ph)C=CH(2)]] (11), and the dinuclear rhodaindenyl complexes [Rh(eta-C(5)H(5))[1-3,8,9-eta-[1-(eta-C(5)H(5))]-3-R(1)-1-rhodaindenyl]] 12 a (R(1)=Ph), 12 b (R(1)=CH(3)). Reaction of 5 with triisopropenylbenzene gives the dinuclear complex [[Rh(eta-C(5)H(5))](2)(mu-beta,alpha,1,2-eta:beta',alpha',4,3-eta-C(6)H(3)[C(CH(3))=CH(2)](3))] (13). In the complexes 9, only the olefinic side chain of the alkenylbenzene binds to the metal. In the complexes 10, 11, 12, and 13, an arene nucleus coordinates to rhodium as a 1,3-diene moiety (or part thereof). The rhodaindenyl complexes 12 result from C-H activation of the alkenylbenzene at the beta and ortho positions. The crystal and molecular structures of 9 a, 9 b, 10, 11, and 12 a, b were determined. The role of 9-11 and 13 as models for intermediates during alkenylbenzene-assisted self-assembly of tricobalt clusters is discussed.  相似文献   

5.
The monohapto neutral 2-(diphenylphosphino)aniline (PNH(2)) complexes [Au(C(6)F(5))(2)X(PNH(2))] (X = C(6)F(5) (1), Cl (2)) have been obtained from [Au(C(6)F(5))(3)(tht)] or [Au(C(6)F(5))(2)(micro-Cl)](2) and PNH(2), and the cationic [Au(C(6)F(5))(2)(PNH(2))]ClO(4) (3) has been similarly prepared from [Au(C(6)F(5))(2)(OEt(2))(2)]ClO(4) and PNH(2) or from 2 and AgClO(4). The neutral amido complex [Au(C(6)F(5))(2)(PNH)] (4) can be obtained by deprotonation of 3 with PPN(acac) (acac = acetylacetonate) or by treatment of the chloro complex 2 with Tl(acac). It reacts with [Ag(OClO(3))(PPh(3))] or [Au(OClO(3))(PPh(3))] to give the dinuclear species [Au(C(6)F(5))(2)[PNH(MPPh(3))]]ClO(4) (M = Ag (5), Au (6)). The latter can also be obtained by reaction of equimolar amounts of 3 and [Au(acac)(PPh(3))]; when the molar ratio of the same reagents is 1:2, the trinuclear cationic complex [Au(C(6)F(5))(2)[PN(AuPPh(3))(2)]]ClO(4) (7) is obtained. The crystal structures of complexes 2-4 and 7 have been established by X-ray crystallography; the last-mentioned displays an unusual Au(I)-Au(III) interaction.  相似文献   

6.
Zhao XL  Wang QM  Mak TC 《Inorganic chemistry》2003,42(24):7872-7876
Four new silver(I) double salts (L(2)H)(4)[Ag(10)(C(2))(CF(3)CO(2))(12)(L)(2)].5H(2)O (1), [Ag(8)(C(2))(CF(3)CO(2))(6)(L)(6)] (2), [(Ag(2)C(2))(AgC(2)F(5)CO(2))(6)(L)(3)(H(2)O)].H(2)O (3), and (L.H(3)O)(2)[Ag(11)(C(2))(2)(C(2)F(5)CO(2))(9)(H(2)O)(2)].H(2)O (4) incorporating the hitherto unexplored ligand 4-hydroxyquinoline (L) have been synthesized by the hydrothermal method. Compound 1 features an unprecedented bicapped square-antiprismatic Ag(10) silver cage with an embedded C(2)(2-) moiety, whereas the discrete supermolecule 2 bears a rhombohedral Ag(8) core similar to that previously found in Ag(2)C(2).6AgNO(3). Compound 3 contains a discrete supramolecular complex whose core is a (C(2))(2)@Ag(16) double cage constructed from the edge-sharing of two monocapped square antiprisms, which is completely surrounded by 12 pentafluoropropionate, 6 4-hydroxyquinoline, and 2 aqua ligands. The layer structure in 4 is constructed from a sinuous anionic silver column composed of fused irregular monocapped trigonal antiprisms each encapsulating a C(2)(2-) dianion, with L.H(3)O(+) species serving as hydrogen-bond connectors to adjacent columns.  相似文献   

7.
The photolytic kinetic properties of a new series of intramolecular bridged alkyl cobaloxime complexes Br(O-C(3)H(6)-(dmgH))(dmgH))Co(III)(2), [H(2)O(O-C(3)H(6)-(dmg))(dmgH(2))]Co(III)[ClO(4)(3), ]Py(O-C(3)H(6)-(dmg))(dmgH(2))[Co(III)]ClO(4)(4), [Bzm(O-C(3)H(6)-(dmg))(dmgH(2))]Co(III)[ClO(4)(5) and ]Im(O-C(3)H(6)-(dmg))(dmgH(2))[Co(III)]ClO(4)(6) and their precursor aqua-(3-bromopropyl)cobaloximes (1) were investigated by UV-Vis spectroscopy. The products of photolytic solutions were characterized by both ESI-MS and (1)H-NMR techniques. Our results revealed a carbon-center radical that is produced from Co-C bond cleavage under photolysis might be linked to the equatorial ligand and thus retained in the proximity of Co(II)-complex. The thermo-gravimetric analysis of complex 2 gives the same conclusion.  相似文献   

8.
Reaction of [Pd(PPh(3))(4)] with 1,1-dichloro-2,3-diarylcyclopropenes gives complexes of the type cis-[PdCl(2)(PPh(3))(C(3)(Ar)(2))] (Ar = Ph 5, Mes 6). Reaction of [Pd(dba)(2)] with 1,1-dichloro-2,3-diarylcyclopropenes in benzene gave the corresponding binuclear palladium complexes trans-[PdCl(2)(C(3)(Ar)(2))](2) (Ar = Ph 7, p-(OMe)C(6)H(4)8, p-(F)C(6)H(4)9). Alternatively, when the reactions were performed in acetonitrile, the complexes trans-[PdCl(2)(NCMe)(C(3)(Ar)(2))] (Ar = Ph 10, p-(OMe)C(6)H(4)11 and p-(F)C(6)H(4)) 12) were isolated. Addition of phosphine ligands to the binuclear palladium complex 7 or acetonitrile adducts 11 and 12 gave complexes of the type cis-[PdCl(2)(PR(3))(C(3)(Ar)(2))] (Ar = Ph, R = Cy 13, Ar = p-(OMe)C(6)H(4), R = Ph 14, Ar = p-(F)C(6)H(4), R = Ph 15). Crystal structures of complexes 6·3.25CHCl(3), 10, 11·H(2)O and 12-15 are reported. DFT calculations of complexes 10-12 indicate the barrier to rotation about the carbene-palladium bond is very low, suggesting limited double bond character in these species. Complexes 5-9 were tested for catalytic activity in C-C coupling (Mizoroki-Heck, Suzuki-Miyaura and, for the first time, Stille reactions) and C-N coupling (Buchwald-Hartwig amination) showing excellent conversion with moderate to high selectivity.  相似文献   

9.
A series of hetero- and homo-dinuclear complexes with direct metal-metal interaction are synthesized through reaction of Cp*Rh[E(2)C(2)(B(10)H(10))] (E = S (1a), Se (1b)) and CpRh[S(2)C(2)(B(10)H(10))] (2a) with low valent half-sandwich CpCo(CO)(2) or CpRh(C(2)H(4))(2) under moderate conditions. The resulting products, namely (Cp*Rh)(CpCo)[E(2)C(2)(B(10)H(10))] (E = S(3a); Se(3b)), (Cp*Rh)(CpRh)[E(2)C(2)(B(10)H(10))] (E = S(4a); Se(4b)) and (CpRh)(CpRh)[S(2)C(2)(B(10)H(10))] (5a), are fully characterized by IR and NMR spectroscopy and elemental analysis. The molecular structures of 3a, 3b, 4a, 4b and 5a are established by X-ray crystallography analyses, and the Rh-Co (2.4778(11) (3a) and 2.5092(16) (3b) A) and Rh-Rh bonds (2.5721(8) (4a), 2.6112(10) (4b), 2.5627(10) (5a) A) fall in the range of single bonds.  相似文献   

10.
Compounds of the new tetrafluorophthalimido anion, [C(6)F(4)(CO)(2)N](-), are readily accessible by treatment of tetrafluorophthalimide with either LiNPr(i)(2) or mixtures of NEt(3) and Me(3)ECl (E = Si or Sn), to give C(6)F(4)(CO)(2)N-X (X = Li 3, SiMe(3)4, and SnMe(3)5). The reaction of the trimethylsilyl derivative 4 with AgF leads cleanly to the ion pair complex [Ag(NCMe)(2)][Ag(N(CO)(2)C(6)F(4))(2)] (6·2MeCN), which contains a linear [Ag{N(CO)(2)C(6)F(4)}(2)](-) anion and a tetracoordinate Ag(+) cation. Compound 6 reacts with iodine to give the N-iodo compound C(6)F(4)(CO)(2)NI 7, which crystallises as an acetonitrile adduct. Treatment of 6 with LAuCl affords LAu{N(CO)(2)C(6)F(4)} (L = Ph(3)P 8a, Cy(3)P 8b, or THT 9), whereas the reaction with AuCl in acetonitrile affords the heterobinuclear compound [Ag(MeCN)(2)][Au{N(CO)(2)C(6)F(4)}(2)]·MeCN (10·3MeCN). The tetrafluorophthalimido ligand is not readily displaced by donor ligands; however, the addition of B(C(6)F(5))(3)(Et(2)O) to a diethyl ether solution of 8a leads to the salt [Au(PPh(3))(2)][N{COB(C(6)F(5))(3)}(2)C(6)F(4))] 11. The analogous reaction of (THT)Au{N(CO)(2)C(6)F(4)} with B(C(6)F(5))(3) in toluene in the presence of excess norbornene (nb) gives [Au(nb)(3)][N{COB(C(6)F(5))(3)}(2)C(6)F(4))] 12. Compounds 11 and 12 contain a new non-coordinating phthalimido-bridged diborate anion with O-bonded boron atoms. The crystal structures of compounds 2-11 are reported.  相似文献   

11.
Eight-coordinate [MX(4)(L-L)(2)] (M = Zr or Hf; X = Cl or Br; L-L = o-C(6)H(4)(PMe(2))(2) or o-C(6)H(4)(AsMe(2))(2)) were made by displacement of Me(2)S from [MX(4)(Me(2)S)(2)] by three equivalents of L-L in CH(2)Cl(2) solution, or from MX(4) and L-L in anhydrous thf solution. The [MI(4)(L-L)(2)] were made directly from reaction of MI(4) with the ligand in CH(2)Cl(2) solution. The very moisture-sensitive complexes were characterised by IR, UV/Vis, and (1)H and (31)P NMR spectroscopy and microanalysis. Crystal structures of [ZrCl(4)[o-C(6)H(4)(AsMe(2))(2)](2)], [ZrBr(4)[-C(6)H(4)(PMe(2))(2)](2)], [ZrI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] and [HfI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] all show distorted dodecahedral structures. Surprisingly, unlike the corresponding Ti(iv) systems, only the eight-coordinate complex was found in each system. In contrast, the ligand o-C(6)H(4)(PPh(2))(2) forms only six-coordinate complexes [MX(4)[-C(6)H(4)(PPh(2))(2)]] which were fully characterised spectroscopically and analytically. Surprisingly the tripodal triarsine, MeC(CH(2)AsMe(2))(3), also produces eight-coordinate [MX(4)[MeC(CH(2)AsMe(2))(3)](2)] in which the triarsines bind as bidentates in a distorted dodecahedral structure. There is no evidence for seven-coordination as found in some thioether systems.  相似文献   

12.
The compounds [Co(2)(CO)(8)] and nido-7,8-C(2)B(9)H(13) react in CH(2)Cl(2) to give a complex mixture of products consisting primarily of two isomers of the dicobalt species [Co(2)(CO)(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (1), together with small amounts of a mononuclear cobalt compound [Co(CO)(2)(eta(5)-10-CO-7,8-C(2)B(9)H(10))] (5) and a charge-compensated carborane nido-9-CO-7,8-C(2)B(9)H(11) (6). In solution, isomers 1a and 1b slowly equilibrate. However, column chromatography allows a clean separation of 1a from the mixture, and a single-crystal X-ray diffraction study revealed that each metal atom is ligated by a terminal CO molecule and in a pentahapto manner by a nido-C(2)B(9)H(11) cage framework. The two Co(CO)(eta(5)-7,8-C(2)B(9)H(11)) units are linked by a Co-Co bond [2.503(2) ?], which is supported by two three-center two-electron B-H right harpoon-up Co bonds. The latter employ B-H vertices in each cage which lie in alpha-sites with respect to the carbons in the CCBBB rings bonded to cobalt. Addition of PMe(2)Ph to a CH(2)Cl(2) solution of a mixture of the isomers 1, enriched in 1b, gave isomers of formulation [Co(2)(CO)(PMe(2)Ph)(eta(5)-7,8-C(2)B(9)H(11))(2)] (2). Crystals of one isomer were suitable for X-ray diffraction. The molecule 2a has a structure similar to that of 1a but differs in that whereas one B-H right harpoon-up Co bridge involves a boron atom in an alpha-site of a CCBBB ring coordinated to cobalt, the other uses a boron atom in the beta-site. Reaction between 1b and an excess of PMe(2)Ph in CH(2)Cl(2) gave the complex [CoCl(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))] (3), the structure of which was established by X-ray diffraction. Experiments indicated that 3 was formed through a paramagnetic Co(II) species of formulation [Co(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))]. Addition of 2 molar equiv of CNBu(t) to solutions of either 1a or 1b gave a mixture of two isomers of the complex [Co(2)(CNBu(t))(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (4). NMR data for the new compounds are reported and discussed.  相似文献   

13.
The coordination chemistry of the novel bidentate tin ligand 1,2-distanna-closo-dodecaborate is illustrated for the first time by reactions with molybdenum, platinum and gold metal complexes. Up to three clusters coordinate two metal centers in close proximity. For all these metal complexes the typical μ-bridging coordination mode was observed exclusively. Furthermore, two cluster anions react with dichloromethane via substitution of the chloride ions. The carbon functionalized tin cluster [Et(4)N](2)[CH(2)(Sn(2)B(10)H(10))(2)] and the coordination complexes [Et(3)NMe](6)[Mo(2)(CO)(6)(Sn(2)B(10)H(10))(3)], [Et(3)NMe](2)[{HPt(PEt(3))(2)(Sn(2)B(10)H(10))}(2)], [Et(4)N](2)[{HPt(PPh(3))(2)(Sn(2)B(10)H(10))}(2)] and [{(TP)Au}(2)(Sn(2)B(10)H(10))] (TP = PhP(o-Ph(2)PC(6)H(4))(2)) are fully characterized by multinuclear NMR spectroscopy, elemental analyses and crystal structure analyses.  相似文献   

14.
Reaction of [Bu(4)N](4)[H(3)PW(11)O(39)] with [Re(NPh)Cl(3)(PPh(3))(2)], in acetonitrile and in the presence of NEt(3), provided the first Keggin-type organoimido derivative [Bu(4)N](4)[PW(11)O(39)(ReNPh)] (Ph = C(6)H(5)) (1). The functionalization was clearly demonstrated by various techniques including (1)H and (14)N NMR, electrochemistry, and ESI mass spectrometry. Conditions for the formation of 1 are also discussed.  相似文献   

15.
Four Fe(III) compounds and one Fe(II) compound containing mononuclear, homoleptic, fluorinated phenolate anions of the form [Fe(OAr)(m)](n-) have been prepared in which Ar(F) = C(6)F(5) and Ar' = 3,5-C(6)(CF(3))(2)H(3): (Ph(4)P)(2)[Fe(OAr(F))(5)], 1, (Me(4)N)(2)[Fe(OAr(F))(5)], 2, {K(18-crown-6)}(2)[Fe(OAr(F))(5)], 3a, {K(18-crown-6)}(2)[Fe(OAr')(5)], 3b, and {K(18-crown-6)}(2)[Fe(OAr(F))(4)], 6. Two dinuclear Fe(III) compounds have also been prepared: {K(18-crown-6)}(2)[(OAr(F))(3)Fe(μ(2)-O)Fe(OAr(F))(3)], 4, and {K(18-crown-6)}(2)[(OAr(F))(3)Fe(μ(2)-OAr(F))(2)Fe(OAr(F))(3)], 5. These compounds have been characterized with UV-vis spectroscopy, elemental analysis, Evans method susceptibility, and X-ray crystallography. All-electron, geometry-optimized DFT calculations on four [Ti(IV)(OAr)(4)] and four [Fe(III)(OAr)(4)](-) species (Ar = 2,3,5,6-C(6)Me(4)H, C(6)H(5), 2,4,6-C(6)Cl(3)H(2), C(6)F(5)) with GGA-BP and hybrid B3LYP basis sets demonstrated that, under D(2d) symmetry, π donation from the O 2p orbitals is primarily into the d(xy) and d(z(2)) orbitals. The degree of donation is qualitatively consistent with expectations based on ligand Br?nsted basicity and supports the contention that fluorinated phenolate ligands facilitate isolation of nonbridged homoleptic complexes due to their reduced π basicity at oxygen.  相似文献   

16.
Interaction of [Ce(L(OEt))(2)(NO(3))(2)] (L(OEt)(-) = [Co(eta(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with (NH(4))(6)[Mo(7)O(24)] in water affords the cerium(iv)-containing oxomolybdenum cluster [H(4)(CeL(OEt))(6)Mo(9)O(38)], which exhibits a unique Ce(6)Mo(9)O(38) core structure.  相似文献   

17.
Metalladichalcogenolate cluster complexes [Cp'Co{E(2)C(2)(B(10)H(10))}]{Co2(CO)5} [Cp' = eta5-C5H5, E = S(3a), E = Se(3b); Cp' = eta5-C5(CH3)5, E = S(4a), E = Se(4b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Mo(CO)2] [E = S(5a), Se(5b)], Cp*Co(micro2-CO)Mo(CO)(py)2[E(2)C(2)(B(10)H(10))] [E = S(6a), Se(6b)], Cp*Co[E(2)C(2)(B(10)H(10))]Mo(CO)2[E(2)C(2)(B(10)H(10))] [E = S(7a), Se(7b)], (Cp'Co[E(2)C(2)(B(10)H(10))]W(CO)2 [E(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(8a), E = Se(8b); Cp' = eta5-C5(CH3)5, E = S(9a), E = Se(9b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Ni [E = S(10a), Se(10b)] and 3,4-(PhCN(4)S)-3,1,2-[PhCN(4)SCo(Cp)S(2)]-3,1,2-CoC(2)B(9)H(8) 12 were synthesized by the reaction of [Cp'CoE(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(1a), E = Se(1b); Cp' = eta5-C5(CH3)5, E = S(2a), E = Se(2b)] with Co2(CO)8, M(CO)3(py)3 (M = Mo, W), Ni(COD)2, [Rh(COD)Cl]2, and LiSCN4Ph respectively. Their spectrum analyses and crystal structures were investigated. In this series of multinuclear complexes, 3a,b and 4a,b contain a closed Co3 triangular geometry, while in complexes 5a-7b three different structures were obtained, the tungsten-cobalt mixed-metal complexes have only the binuclear structure, and the nickel-cobalt complexes were obtained in the trinuclear form. A novel structure was found in metallacarborane complex 12, with a B-S bond formed at the B(7) site. The molecular structures of 4a, 5a, 6a, 7b, 9a, 9b, 10a and 12 have been determined by X-ray crystallography.  相似文献   

18.
The synthesis of half-sandwich transition metal complexes containing both 1,2-dichalcogenolato-1,2-dicarba-closo-docecaborane (Cab(E,E)) [Cab(E,E)=E(2)C(2)(B(10)H(10)); E = S, Se] and N-heterocyclic carbene (NHC) ligands is described. Addition of mono-NHC ligand to the 16e half-sandwich dichalcogenolato carborane complexes [Cp*Rh(Cab(E,E))], [Cp*Ir(Cab(S,S))], [(p-cymene)Ru(Cab(S,S))] (Cp* = pentamethylcyclopentadienyl) gives corresponding mononuclear 18e dithiolate complexes of the type [LM(Cab(E,E))(NHC)]: [Cp*M(Cab(S,S))(1-ethenyl-3-methylimidazolin-2-ylidene)] (M = Ir (2), Rh (3)), [Cp*Rh(Cab(E,E))(3-methyl-1-picolyimidazolin-2-ylidene)] [E = S (6), Se (7)], [(p-cymene)Ru(Cab(S,S))(NHC)] [NHC = 1-ethenyl-3-methylimidazolin-2-ylidene (4), 3-methyl-1-picolyimidazolin-2-ylidene (8)], whereas bis-NHC give centrosymmetric binuclear complexes [{Cp*M(Cab(S,S))}(2)(1,1'-dimethyl-3,3'-methylene(imidazolin-2-ylidene))] [M = Rh (10), Ir (11)]. The complexes were characterized by IR, NMR spectroscopy and elemental analysis. In addition, X-ray structure analyses were performed on complexes 2-4, 6, 8, 10 and 11.  相似文献   

19.
The species Cy(2)PHC(6)F(4)BF(C(6)F(5))(2) reacts with Pt(PPh(3))(4) to yield the new product cis-(PPh(3))(2)PtH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 1 via oxidative addition of the P-H bond of the phosphonium borate to Pt(0). The corresponding reaction with Pd(PPh(3))(4) affords the Pd analogue of 1, namely, cis-(PPh(3))(2)PdH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 3; while modification of the phosphonium borate gave the salt [(PPh(3))(3)PtH][(tBu(2)PC(6)F(4)BF(C(6)F(5))(2))] 2. Alternatively initial deprotonation of the phosphonium borate gave [tBu(3)PH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 4, [SIMesH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 5 which reacted with NiCl(2)(DME) yielding [BaseH](2)[trans-Cl(2)Ni(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 6, SIMes 7) or with PdCl(2)(PhCN)(2) to give [BaseH](2)[trans-Cl(2)Pd(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 8, SIMes 9). While [C(10)H(6)N(2)(Me)(4)H][tBu(2)PC(6)F(4)BF(C(6)F(5))(2)] 10 was also prepared. A third strategy for formation of a metal complex of anionic phosphine-borate derivatives was demonstrated in the reaction of (COD)PtMe(2) with the neutral phosphine-borane Mes(2)PC(6)F(4)B(C(6)F(5))(2) affording (COD)PtMe(Mes(2)PC(6)F(4)BMe(C(6)F(5))(2)) 11. Extension of this reactivity to tBu(2)PH(CH(2))(4)OB(C(6)F(5))(3)) was demonstrated in the reaction with Pt(PPh(3))(4) which yielded cis-(PPh(3))(2)PtH(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)) 12, while the reaction of [SIMesH][tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)] 13 with NiCl(2)(DME) and PdCl(2)(PhCN)(2) afforded the complexes [SIMesH](2)[trans-Cl(2)Ni(tBu(2)PC(4)H(8)OB(C(6)F(5))(3))(2)] 14 and [SIMesH](2)[trans-PdCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))(2)] 15, respectively, analogous to those prepared with 4 and 5. Finally, the reaction of 7 and 13with [(p-cymene)RuCl(2)](2) proceeds to give the new orange products [SIMesH][(p-cymene)RuCl(2)(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))] 16 and [SIMesH][(p-cymene)RuCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))] 17, respectively. Crystal structures of 1, 6, 10, 11, 12, and 16 are reported.  相似文献   

20.
The 16-electron half-sandwich complex [Cp*Ir[S2C2(B10H10)]] (Cp* = eta5-C5Me5) (1a) reacts with [[Rh(cod)(mu-Cl)]2] (cod = cycloocta-1,5-diene, C8H12) in different molar ratios to give three products, [[Cp*Ir[S2C2(B10H9)]]Rh(cod)] (2), trans-[[Cp*Ir[S2C2(B10H9)]]Rh[[S2C2(B10H10)]IrCp*]] (3), and [Rh2(cod)2[(mu-SH)(mu-SC)(CH)(B10H10)]] (4). Complex 3 contains an Ir2Rh backbone with two different Ir-Rh bonds (3.003(3) and 2.685(3) angstroms). The dinuclear complex 2 reacts with the mononuclear 16-electron complex 1a to give 3 in refluxing toluene. Reaction of 1a with [W(CO)3(py)3] (py = C5H5N) in the presence of BF3.EtO2 leads to the trinuclear cluster [[Cp*Ir[S2C2(B10H10)]]2W(CO)2] (5) together with [[Cp*Ir(CO)[S2C2(B10H10)]]W(CO)5] (6), and [Cp*Ir(CO)[S2C2(B10H10)]] (7). Analogous reactions of [Cp*Rh[S2C2(B10H10)]] (1 b) with [[Rh(cod)(mu-Cl)]2] were investigated and two complexes cis-[[Cp*Rh[S2C2(B10H10)]]2Rh] (8) and trans-[[Cp*Rh[S2C2(B10H10)]]2Rh] (9) were obtained. In refluxing THF solution, the cisoid 8 is converted in more than 95 % yield to the transoid 9. All new complexes 2-9 were characterized by NMR spectroscopy (1H, 11B NMR) and X-ray diffraction structural analyses are reported for complexes 2-5, 8, and 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号