首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the feasibility of an MRI protocol providing whole-body T2* maps at 1.5 T. Seven healthy volunteers (mean age=30.1+/-3.7, three women and four men) and two patients (both male, 53 and 46 years old) affected by transfusion-dependent anemias participated in the study. Coronally oriented images of five subsequent body levels were acquired using a fat-suppressed multiecho 2D gradient-echo sequence (12 echo times ranging from 4.8 to 76.3 ms were selected) and afterwards composed. Parametrical T2* maps of the whole body were reconstructed on a pixel-by-pixel basis. For both, healthy volunteers and patients, representative T2* values were computed from extended regions of interest (ROIs). Good-quality whole-body T2* maps were computed in all volunteers and patients. In healthy volunteers, T2* values were assessed in the cerebral white (58.5+/-4.2 ms) and gray (81.4+/-5.5 ms) matter, liver (34.3+/-7.0 ms), spleen (63.5+/-3.3 ms), kidneys (65.4+/-10.3 ms) and skeletal muscles (~30 ms). The liver presented faster relaxation rates in males as compared to females. One patient (serum ferritin concentration=927 microg/dl) showed shortened T2* values in liver (3.6+/-5.5 ms), spleen (3.1+/-4.8 ms), kidneys (11.1+/-7.1 ms) and muscles (25.1+/-3.4 ms). The second patient (serum ferritin concentration=346 microg/dl) presented reduced T2* values in liver (3.9+/-7.3 ms), spleen (20.1+/-9.8 ms) and kidneys (24.6+/-7.7 ms). The presented technique may find clinical application in the assessment of the iron burden in the entire body, and in monitoring of chelation therapies in patients treated with frequent blood transfusions.  相似文献   

2.
This article concerns the evaluation of the quality of interictal epileptiform EEG discharges recorded throughout simultaneous echo planar imaging (EPI). BOLD (blood oxygen level dependent) functional MRI (fMRI) images were acquired continuously on a patient with intractable epilepsy. EEG was sampled simultaneously, during and after imaging, with removal of pulse and imaging artifacts by subtraction of channel-specific running averages. Contiguous EEG epochs recorded with and without fMRI (fMRI+ve vs. fMRI−ve) were next randomized and presented to two blinded observers. Epileptiform discharges were identified retrospectively, and comparison was made in terms of the number of identified events, their amplitude, and spatiotemporal distribution. A spectral analysis was also performed on the EEG. In the randomized comparison of EEG segments, 80 (fMRI+ve) vs. 69 (fMRI−ve) discharges were noted with good interobserver agreement (69%). There were no significant differences in amplitude or spatio-temporal distribution. Comparison of the events detected and measured by two expert observers demonstrated that the Interictal Epileptiform Discharge (IED) characteristics were indistinguishable with and without scanning. We review briefly the existing literature on EEG recording quality for combined EEG/fMRI.  相似文献   

3.
This study quantified the impact of the well-known physiologic noise correction algorithm RETROICOR applied to a pain functional magnetic resonance imaging (FMRI) experiment at two field strengths: 1.5 and 3.0 T. In the 1.5-T acquisition, there was an 8.2% decrease in time course variance (σ) and a 227% improvement in average model fit (increase in mean R2a). In the 3.0-T acquisition, significantly greater improvements were seen: a 10.4% decrease in σ and a 240% increase in mean R2a. End-tidal carbon dioxide data were also collected during scanning and used to account for low-frequency changes in cerebral blood flow; however, the impact of this correction was trivial compared to applying RETROICOR. Comparison between two implementations of RETROICOR demonstrated that oversampled physiologic data can be applied by either downsampling or modification of the timing in the RETROICOR algorithm, with equivalent results. Furthermore, there was no significant effect from manually aligning the physiologic data with corresponding image slices from an interleaved acquisition, indicating that RETROICOR accounts for timing differences between physiologic changes and MR signal changes. These findings suggest that RETROICOR correction, as it is commonly implemented, should be included as part of the data analysis for pain FMRI studies performed at 1.5 and 3.0 T.  相似文献   

4.
In the clinical MRI practice, it is common to assess liver iron overload by T2* multi-echo gradient-echo images. However, there is no full consensus about the best image analysis approach for the T2* measurements. The currently used methods involve manual drawing of a region of interest (ROI) within MR images of the liver. Evaluation of a representative liver T2* value is done by fitting an appropriate model to the signal decay within the ROIs vs. the echo time. The resulting T2* value may depend on both ROI placement and choice of the signal decay model. The aim of this study was to understand how the choice of the analysis methodology may affect the accuracy of T2* measurements. A software model of the iron overloaded liver was inferred from MR images acquired from 40 thalassemia major patients. Different image analysis methods were compared exploiting the developed software model. Moreover, a method for global semiautomatic T2* measurement involving the whole liver was developed. The global method included automatic segmentation of parenchyma by an adaptive fuzzy-clustering algorithm able to compensate for signal inhomogeneities. Global liver T2* value was evaluated using a pixel-wise technique and an optimized signal decay model. The global approach was compared with the ROI-based approach used in the clinical practice. For the ROI-based approach, the intra-observer and inter-observer coefficients of variation (CoVs) were 3.7% and 5.6%, respectively. For the global analysis, the CoVs for intra-observers and inter-observers reproducibility were 0.85% and 2.87%, respectively. The variability shown by the ROI-based approach was acceptable for use in the clinical practice; however, the developed global method increased the accuracy in T2* assessment and significantly reduced the operator dependence and sampling errors. This global approach could be useful in the clinical arena for patients with borderline liver iron overload and/or requiring follow-up studies.  相似文献   

5.
Indirect echoes (such as stimulated echoes) are a source of signal contamination in multi-echo spin-echo T2 quantification and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolved extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14-fold.  相似文献   

6.
In pharmacological fMRI experiments in animal models, blood pool contrast agents may be used to map cerebral blood volume change as a surrogate for neural activation. When the background signal drift due to contrast agent washout is non-negligible over the duration of the signal changes of interest, time-course detrending is essential for accurate interpretation of the experiment. Detrending approaches based on estimation of the background signal from a baseline period of the time course prior to pharmacological (or functional) challenge were evaluated with the aim of identifying a robust method of estimating the contrast agent washout contribution to the background signal drift. For fMRI studies in the rat, it was found that a constrained fit of a mono-exponential washout model was more accurate than a constant background approximation and unconstrained fits for experiments investigating the functional response to rapid pharmacological challenges such as cocaine and amphetamine. Moreover, the constrained fitting approach allows shorter baseline periods than unconstrained extrapolation, reducing the required duration of the experiment.  相似文献   

7.
A simple method for obtaining images whose contrast depends only on T2 is described and tested both on phantoms and in vivo. The method works reliably and effectively under clinically realistic operating conditions using standard imaging protocols. It can result in a substantial reduction in imaging times for T2 weighted images.  相似文献   

8.
T2* measurements in human brain at 1.5, 3 and 7 T   总被引:1,自引:0,他引:1  
Measurements have been carried out in six subjects at magnetic fields of 1.5, 3 and 7 T, with the aim of characterizing the variation of T2* with field strength in human brain. Accurate measurement of T2* in the presence of macroscopic magnetic field inhomogeneity is problematic due to signal decay resulting from through-slice dephasing. The approach employed here allowed the signal decay due to through-slice dephasing to be characterized and removed from data, thus facilitating an accurate measurement of T2* even at ultrahigh field. Using double inversion recovery turbo spin-echo images for tissue classification, an analysis of T2* relaxation times in cortical grey matter and white matter was carried out, along with an evaluation of the variation of T2* with field strength in the caudate nucleus and putamen. The results show an approximately linear increase in relaxation rate R2* with field strength for all tissues, leading to a greater range of relaxation times across tissue types at 7 T that can be exploited in high-resolution T2*-weighted imaging.  相似文献   

9.
建立了一种计算Si(001)-(2×2×1):H表面O2吸附的理论模型.在周期性边界条件下,采用基于密度泛函理论广义梯度近似的超软赝势法对Si(001)-(2×2×1):H表面O2吸附进行了第一性研究.通过占位能的计算,得到了Si(001)-(2×2×1):H表面O2的最佳吸附位置.计算结果表明吸附后的反应产物应为Si=O和H2O,从理论上支持了D.Kovalev等人提出反应机制.  相似文献   

10.
To date, little data is available on the reproducibility of functional connectivity MRI (fcMRI) studies. Here, we tested the variability and reproducibility of both the functional connectivity itself and different statistical methods to analyze this phenomenon. In the main part of our study, we repeatedly examined two healthy subjects in 10 sessions over 6 months with fcMRI. Cortical areas involved in motor function were examined under two different cognitive states: during continuous performance (CP) of a flexion/extension task of the fingers of the right hand and while subjects were at rest. Connectivity to left primary motor cortex (lSM1) was calculated by correlation analysis. The resulting correlation coefficients were transformed to z-scores of the standard normal distribution. For each subject, multisession statistical analyses were carried out with the z-score maps of the resting state (RS) and the CP experiments. First, voxel based t tests between the two groups of fcMRI experiments were performed. Second, ROI analyses were carried out for contralateral right SM1 and for supplementary motor area (SMA). For both ROI, mean and maximum z-score were calculated for each experiment. Also, the fraction of significantly (P<.05) correlated voxels (FCV) in each ROI was calculated. To evaluate the differences between the RS and the CP condition, paired t tests were performed for the mean and maximum z-scores, and Wilcoxon signed ranks tests for matched pairs were carried out for the FCV. All statistical methods and connectivity measures under investigation yielded a distinct loss in left–right SM1 connectivity under the CP condition. For SMA, interindividual differences were apparent. We therefore repeated the fcMRI experiments and the ROI analyses in a group of seven healthy subjects (including the two subjects of the main study). In this substudy, we were able to verify the reduction of left–right SM1 connectivity during unilateral performance. Still, the direction of SMA to lSM1 connectivity change during the CP condition remained undefined as four subjects showed a connectivity increase and three showed a decrease. In summary, we were able to demonstrate a distinct reduction in left–right SM1 synchrony in the CP condition compared to the RS both in the longitudinal and in the multisubject study. This effect was reproducible with all statistical methods and all measures of connectivity under investigation. We conclude that despite intra- and interindividual variability, serial and cross-sectional assessment of functional connectivity reveals stable and reliable results.  相似文献   

11.
本文回顾性分析19例经病理证实为WHO Ⅱ-Ⅲ级且具有T2/FLAIR错配征的脑胶质瘤患者.从患者的影像数据中提取肿瘤区整体特征和错配区影像参数进行定量分析,探讨T2/FLAIR错配征在评价异柠檬酸脱氢酶(IDH)突变伴1p/19q未联合缺失型(IDHMUT/1p/19q+)较低级别胶质瘤(LGG)的诊断效能.本研究表明,整体及部分T2/FLAIR错配征可作为预测IDHMUT/1p/19q+ LGG的影像标志物.肿瘤区整体影像特征联合错配区定量参数有助于提高对IDHMUT/1p/19q+ LGG的诊断效能.  相似文献   

12.
Most modern techniques for functional magnetic resonance imaging (fMRI) rely on blood-oxygen-level-dependent (BOLD) contrast as the basic principle for detecting neuronal activation. However, the measured BOLD effect depends on a transfer function related to neurophysiological changes accompanying electrical neural activation. The spatial accuracy and extension of the region of interest are determined by vascular effect, which introduces incertitude on real neuronal activation maps. Our efforts have been directed towards the development of a new methodology that is capable of combining morphological, vascular and functional information; obtaining new insight regarding foci of activation; and distinguishing the nature of activation on a pixel-by-pixel basis. Six healthy volunteers were studied in a parametric auditory functional experiment at 3 T; activation maps were overlaid on a high-resolution brain venography obtained through a novel technique. The BOLD signal intensities of vascular and nonvascular activated voxels were analyzed and compared: it was shown that nonvascular active voxels have lower values for signal peak (P<10(-7)) and area (P<10(-8)) with respect to vascular voxels. The analysis showed how venous blood influenced the measured BOLD signals, supplying a technique to filter possible venous artifacts that potentially can lead to misinterpretation of fMRI results. This methodology, although validated in the auditory cortex activation, maintains a general applicability to any cortical fMRI study, as the basic concepts on which it relies on are not limited to this cortical region. The results obtained in this study can represent the basis for new methodologies and tools that are capable of adding further characterization to the BOLD signal properties.  相似文献   

13.

Purpose

To evaluate the liver-to-muscle signal intensity and R2* methods to gain a transferable, clinical application for liver iron measurement.

Materials and Methods

Sixteen liver phantoms and 33 human subjects were examined using three 1.5-T MRI scanners from two different vendors. Phantom-to-muscle and liver-to-muscle signal intensity ratios were analyzed to determine MRI estimated phantom and hepatic iron concentration (M-PIC and M-HIC, respectively). R2* was calculated for the phantoms and the liver of human subjects. Seven patients' biochemical hepatic iron concentration was obtained.

Results

M-PIC and R2* results of three scanners correlated linearly to phantom iron concentrations (r=0.984 to 0.989 and r=0.972 to 0.981, respectively), and no significant difference between the scanners was found (P=.482 and P=.846, respectively) in vitro. The patients' R2* correlated linearly to M-HIC of the standard scanner (r=0.981). M-HIC values did not differ from those obtained from the biopsy specimens (P=.230). The difference in M-HIC was significant, but the difference in R2* was not significant between the scanners (P<.0001 and P=.505, respectively) in vivo.

Conclusion

Both methods, M-HIC and R2*, are reliable iron concentration indicators with linear dependence on iron concentration in vivo and in vitro. The R2* method was found to be comparable among different scanners. Transferability testing is needed for the use of the methods at various scanners.  相似文献   

14.
We present the results of quantitative Magnetic Resonance Imaging (MRI) in 55 consecutively referred patients with clinical evidence of temporal lobe epilepsy (TLE). The Cavalieri method was used in combination with point counting to provide unbiased estimates of the volume of the left and right hippocampus, amygdala, temporal lobe, lateral ventricles and cerebral hemisphere, and pixel by pixel maps of the T2 relaxation time were computed for both central and anterior sections of the hippocampus. The 99th centiles of hippocampal volume, hippocampal volume asymmetry and T2 relaxation times in 20 control subjects provided limits which identified the presence of MTS. The results of the quantitative MRI were compared with the results of conventional diagnostic MRI, foramen ovale (FO) recording and the WADA test. Thirty-one patients were found to have unilateral MTS (17 left and 14 right) and 7 bilateral MTS. No evidence of MTS was detected in 16 patients. Of the 31 patients diagnosed with unilateral MTS on the basis of hippocampal volume and T2 measurement, 74% and 77% would respectively have received the same diagnosis on the basis of hippocampal volume and T2 measurements alone. In comparison to FO recording, quantitative MRI has a sensitivity of 55% and a specificity of 86%, while conventional diagnostic MRI has a sensitivity of 42% and a specificity of 80% for detection of MTS. Unilateral abnormalities were detected by FO recording in 30% cent of patients who appeared normal on quantitative MRI. WADA test results were available for 40 patients. The findings were consistent with quantitative MRI showing reduced memory function ipsilateral to unilateral MTS in 18 patients, but reduced memory function contralateral to unilateral MTS in two patients, and reduced memory function without MR abnormality in seven patients. WADA testing revealed unilateral memory impairments where MRI found bilateral pathology in 4 patients and in 4 patients in whom quantitative MRI detected unilateral MTS there was no evidence of reduced memory during WADA testing of the corresponding cerebral hemisphere. In the patients with unilateral right MTS a highly significant negative correlation (p = 0.0003) was observed between age of onset and the volume of the contralateral temporal lobe.

Quantitative MR imaging of the hippocampus (i.e. volume and T2 measurement) is preferable to conventional radiological reporting for providing objective evidence of the presence of MTS on which to base the referral of patients for surgery, and since it has associated morbidity FO recording is now only being used in selected patients. Furthermore, stereology provides a convenient method for estimating the volume of other brain structures, which is relevant to obtaining a better understanding of the effects of laterality and age of onset of TLE.  相似文献   


15.
OBJECTIVES: The objectives of this study were to develop protocols that measure abdominal fat and calf muscle lipids with magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), respectively, at 3 T and to examine the correlation between these parameters and insulin sensitivity. MATERIALS AND METHODS: Ten nondiabetic subjects [five insulin-sensitive (IS) subjects and five insulin-resistant (IR) subjects] were scanned at 3 T. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were segmented semiautomatically from abdominal imaging. Intramyocellular lipids (IMCL) in calf muscles were quantified with single-voxel MRS in both soleus and tibialis anterior muscles and with magnetic resonance spectroscopic imaging (MRSI). RESULTS: The average coefficient of variation (CV) of VAT/(VAT+SAT) was 5.2%. The interoperator CV was 1.1% and 5.3% for SAT and VAT estimates, respectively. The CV of IMCL was 13.7% in soleus, 11.9% in tibialis anterior and 2.9% with MRSI. IMCL based on MRSI (3.8+/-1.2%) were significantly inversely correlated with glucose disposal rate, as measured by a hyperinsulinemic-euglycemic clamp. VAT volume correlated significantly with IMCL. IMCL based on MRSI for IR subjects was significantly greater than that for IS subjects (4.5+/-0.9% vs. 2.8+/-0.5%, P=.02). CONCLUSION: MRI and MRS techniques provide a robust noninvasive measurement of abdominal fat and muscle IMCL, which are correlated with insulin action in humans.  相似文献   

16.
The purpose of this paper is to investigate the feasibility of using a similarity coefficient map(SCM) in improving the morphological evaluation of T2* weighted(T2*W) magnatic resonance imaging(MRI) for renal cancer.Simulation studies and in vivo 12-echo T2*W experiments for renal cancers were performed for this purpose.The results of the first simulation study suggest that an SCM can reveal small structures which are hard to distinguish from the background tissue in T2*W images and the corresponding T2* map.The capability of improving the morphological evaluation is likely due to the improvement in the signal-to-noise ratio(SNR) and the carrier-to-noise ratio(CNR) by using the SCM technique.Compared with T2* W images,an SCM can improve the SNR by a factor ranging from 1.87 to 2.47.Compared with T2* maps,an SCM can improve the SNR by a factor ranging from 3.85 to 33.31.Compared with T2*W images,an SCM can improve the CNR by a factor ranging from 2.09 to 2.43.Compared with T2* maps,an SCM can improve the CNR by a factor ranging from 1.94 to 8.14.For a given noise level,the improvements of the SNR and the CNR depend mainly on the original SNRs and CNRs in T2*W images,respectively.In vivo experiments confirmed the results of the first simulation study.The results of the second simulation study suggest that more echoes are used to generate the SCM,and higher SNRs and CNRs can be achieved in SCMs.In conclusion,an SCM can provide improved morphological evaluation of T2*W MR images for renal cancer by unveiling fine structures which are ambiguous or invisible in the corresponding T2*W MR images and T2* maps.Furthermore,in practical applications,for a fixed total sampling time,one should increase the number of echoes as much as possible to achieve SCMs with better SNRs and CNRs.  相似文献   

17.
用核磁共振成象研究大白鼠的光化学反应脑缺血模型   总被引:3,自引:1,他引:2  
用不同权重的核磁共振T2加权成象数据在采样过程中完成叠加,所得到的核磁共振T2加权图象清晰地显示出大白鼠大脑中缺血损伤区域的位置和大小.用该方法研究大白鼠的光化学反应局部脑缺血模型,在大白鼠脑缺血发生后大约一小时即可以用T2加权的MRI图象发现缺血区,证明该种方法有很大的应用潜力.  相似文献   

18.
利用TD-NMR技术研究杨木高温干燥过程水分分布   总被引:1,自引:0,他引:1  
木材中水分状态变化和迁移对木材的物理性质有重要影响.通过时域核磁共振技术(TD-NMR)可以从分子层面解读木材与水分的关系,可以为木材干燥、木制品加工提供理论依据和实践参考.该研究以北京杨为研究对象,通过对高温干燥过程中木材内部水分变化的自由感应衰减(FID)曲线和横向弛豫时间(T_2)进行测定与分析,探究木材干燥过程中水分状态变化及迁移过程.研究结果表明,FID和T_2信号量与木材含水率高度线性相关,由此可以计算木材在干燥过程中任意时刻的含水率.通过对干燥过程中水分T_2分布的分析表明:心材试件在干燥过程中,长弛豫时间自由水(c状态水分)的拟合面积出现了先减小后增大然后再减小的趋势,而边材试件中则不存在这种现象.在北京杨心材试件中含量最多的是弛豫时间为10 ms数量级的水分,而在边材试件中各状态水分含量差异较小,含量最多的是弛豫时间为100 ms数量级的水分.在高温干燥过程中,边材试件内各状态水分百分含量减少的速度快于心材,各试件中自由水的蒸发速度明显快于结合水.  相似文献   

19.
本文设计、合成并测试了一种新型的基于有机钆纳米颗粒的磁共振成像(MRI)造影剂.以1, 2-氨基硫醇与氰基的缩合反应为基础,成功合成了粒径在8~23 nm范围内的有机钆纳米颗粒.该有机钆纳米颗粒作为磁共振造影剂时,随着时间的推移,其纵向弛豫率逐渐减弱,横向弛豫率先增强后逐渐减弱,这与钆纳米颗粒粒径增大有关.有机钆纳米颗粒同时存在随时间变化的纵向弛豫和横向弛豫,表明它有望成为一种先进的T1-T2双模态MRI造影剂.  相似文献   

20.
基于太赫兹光谱的物质成分定量分析是太赫兹技术重要的应用方向之一。但是当太赫兹波入射样品时,会与样品颗粒在微观尺度下发生散射效应,造成太赫兹波强度的衰减。因此实验测得的样品的太赫兹吸收谱主要由两部分组成,即样品本身对太赫兹波的吸收以及由散射效应造成的衰减。尤其是当样品的颗粒尺寸与太赫兹波的波长接近或可相比拟时,散射效应更为明显。在以往的太赫兹定量分析领域,往往仅考虑了Lambert-Beer定律,即物质对光的吸收与其浓度成线性变化的关系,而忽视了散射效应的作用,导致定量分析的准确度受到了限制。在对混合物样品的太赫兹波段散射效应进行分析的基础上,采用类比的方法,提出了混合物的太赫兹吸收谱模型,并通过一系列定量分析实验验证了该模型的有效性。在对多组混合物样品的定量分析实验中,定量分析误差普遍小于3%,较之仅考虑Lambert-Beer定律而言准确度得到了大幅提高,表明研究散射效应对提高太赫兹定量分析的准确度具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号