首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5 ± 1.7, 110 ± 9.4, 95 ± 26, 120 ± 32, 110 ± 12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.  相似文献   

2.
以蚯蚓(Eisenia fetida)为受试生物,研究了8:2和10:2氟调醇(FTOH)在蚯蚓体内的生物富集特性、清除速率和生物转化等.结果表明,全氟辛酸(PFOA)是8:2 FTOH主要的末端降解产物,全氟癸酸(PFDA)是10:2 FTOH主要的末端降解产物.暴露30 d后,蚯蚓体内的全氟化合物浓度达到最高,分别为PFDA(565 ng/g)8:2 FTOH(505 ng/g)PFOA(179 ng/g)10:2 FTOH(148 ng/g).清除阶段8:2 FTOH,10:2 FTOH,PFOA和PFDA半衰期(t1/2)分别为23.1 d,16.5 d,5.8 d和11.4 d,其对应的清除速率常数(ke)分别为0.03/d,0.042/d,0.12/d,0.061/d,说明长碳链的PFCAs更难从生物体内清除,母体化合物FTOHs在蚯蚓体内的持久性更强.  相似文献   

3.
A fast analytical method for the determination of perfluorinated compounds in poultry manure by LC–MS/MS was developed. The extraction was carried out by ultrasound‐assisted extraction of 1 g of sample, during 2 × 15 min using low volume (5.5 mL) of a mixture of methanol and acetonitrile. An efficient extraction of perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl sulfonamides from poultry manure was obtained with recoveries higher than 81%. The cleanup of extracts was carried out by dispersive SPE. The validation of the proposed method showed the suitability of this procedure to determine perfluorinated compounds in poultry manure with detection limits in the range of 0.44–2.12 ng/g, depending on the target compound. In comparison with previously published methods, the miniaturization of the sample preparation method with ultrasound‐assisted extraction together with the use of a core‐shell column permit a lower consumption of organic solvents and a fast analysis of perfluorinated compounds. Manure samples obtained from Spanish commercial farms were analyzed and low perfluorinated compounds levels were found, which may be originated by dietary or environmental exposure. The highest concentrations measured corresponded to the perfluoroalkyl sulfonates, which varied from 8.2 to 35.9 ng/g.  相似文献   

4.
This article describes the development of an analytical method for the determination of fluorotelomer alcohols (FTOHs) in soil. The sensitive and selective determination of the telomer alcohols was performed by extraction with methyl tert-butyl ether (MTBE) and analysis of the extract using gas chromatography with detection and quantification by mass spectrometry operated in the positive chemical ionization mode. The protonated molecular ion, [M+H]+ and a fragment ion (loss of HF + H2O) m/z 38 less than the molecular ion were monitored to identify tentatively FTOHs in MTBE extracts of contaminated soils. The FTOHs were confirmed by treatment of the extract with a silylation reagent and observing the disappearance of the FTOH response and the appearance of peaks attributable to the [M+H]+ ions of the trimethylsilyl derivatives. Mass-labeled FTOHs were used as recovery and matrix internal standards. Recovery experiments on soils shown to be free of endogenous FTOHs at instrument detection limits (IDL) of 16 fg/μL for 6:2 FTOH, 10 fg/μL for 8:2 FTOH and 14 fg/μL for 10:2 FTOH yielded a limit of quantitation (LOQ) of 190, 100, and 160 fg/μL for 6:2 FTOH, 8:2 FTOH, and 10:2 FTOH, respectively when 3 g samples of soil were extracted with 1 mL MTBE. The levels of the 6:2 FTOH, 8:2 FTOH, and 10:2 FTOH in five soils contaminated with FTOHs by exposure to the laboratory atmosphere during air drying were determined. In these air-dried soils, concentrations of FTOHs ranged from non-detectable to 3600 fg/μL (0.6 ng/g) of the 6:2 FTOH in the extract of a commercial topsoil. This method was used to determine even and odd numbered FTOHs from 6:2 through 14:2 in soils from fields that had received applications of sewage sludge. Concentrations of FTOHs in these sludge-applied soils ranged as high as 820 ng/g of dry soil for the 10:2 FTOH.  相似文献   

5.
Using bamboo‐activated charcoal as SPE adsorbent, a novel SPE method was developed for the sensitive determination of tetrabromobisphenol A and bisphenol A in environmental water samples by rapid‐resolution LC‐ESI‐MS/MS. Important parameters influencing extraction efficiency, including type of eluent, eluent volume, sample pH, volume and flow rate, were investigated and optimized. Under the optimal extraction conditions (eluent: 8 mL methanol, pH: 7; flow rate: 4 mL/min; sample volume: 100 mL), low LODs (0.01–0.02 ng/mL), good repeatability (6.2–8.3%) and wide linearity range (0.10–10 ng/mL) were obtained. Satisfied results were achieved when the proposed method was applied to determine the two target compounds in real‐world environmental water samples with spiked recoveries over the range of 80.5–119.8%. All these facts indicate that trace determination of tetrabromobisphenol A and bisphenol A in real‐world environmental water samples can be realized by bamboo‐activated charcoal SPE‐rapid resolution‐LC‐ESI‐MS/MS.  相似文献   

6.
The performance of three different types of mass spectrometers (MS) coupled to high performance liquid chromatography (HPLC) was compared for trace analysis of perfluoroalkylated substances (PFAS) and fluorotelomer alcohols (FTOHs). Ion trap MS in the full scan and product ion MS2 mode, time-of-flight (TOF) high resolution MS and quadrupole MS in the selected ion mode as well as triple quadrupole tandem MS were tested. Electrospray ionisation in the negative ion mode [ESI-] was best suited for all instruments and compounds. PFAS could only be separated by a buffered mobile phase, but the presence of buffer suppressed the ionisation of FTOHs. Therefore, two independent chromatographic methods were developed for the two compound classes. Mass spectra and product ion spectra obtained by in-source and collision induced dissociation fragmentation are discussed including ion adduct formation. Product ion yields of PFAS were only in the range of 0.3 to 12%, independent from the applied MS instrument. Ion trap MS2 gave product ion yields of 20 to 62% for FTOHs, whereas only 4.1 to 5.8% were obtained by triple quadrupole tandem MS. Ion trap MS was best suited for qualitative analysis and structure elucidation of branched isomeric structures of PFAS. Providing typical detection limits of 5 ng injected in MS2 mode, it was not sensitive enough for selective trace amount quantification. TOF high resolution MS was the only technique combining high selectivity and excellent sensitivity for PFAS analysis (detection limits of 2 to 10 pg), but lacked the possibility of MS-MS. Triple quadrupole tandem MS was the method of choice for quantification of FTOHs with detection limits in the low pg range. It is also well suited for the determination of PFAS, though its detection limits of 10 to 100 pg in tandem MS mode are about one order of magnitude higher than for TOF MS.  相似文献   

7.
Several analytical methods were optimised for the analysis of 29 per- and polyfluoroalkyl substances (PFASs), including perfluorocarboxylic acids, perfluoroalkyl sulphonic acids and fluorotelomers (FTs), such as sulphonate, saturated carboxylic acid, unsaturated carboxylic acid, sulphonamide and sulphonamide betaine (FTAB), in environmental samples in order to assess pollution by PFASs around heavily contaminated sites. Non-filtered water samples were extracted, purified and pre-concentrated by a solid-phase extraction (SPE) procedure. Solid samples (sediments, soils and sludges) were extracted through solvent extraction under acidic conditions and thereafter purified and pre-concentrated using the same SPE procedure as for the water samples. An ultra-high performance liquid chromatography coupled to tandem mass spectrometry in negative electrospray ionisation mode was employed to separate and detect targeted compounds. Twelve labelled internal standards were used to provide an adequate correction compensating for matrix effects. The limits of quantification (LOQs) were between 4 and 10 ng/L in water depending on the analytes. For solid samples, the LOQs were 2 ng/g dry weight (dw) in sediments and soils, and 20 ng/g dw in sludges for all analytes. A surrogate parameter method based on the carboxylation of perfluoroalkyl acid precursors under basic pH conditions was furthermore implemented to estimate the occurrence of non-targeted PFAS compounds. In order to evaluate the reliability of these analytical methods, environmental samples collected around a training area in France, where aqueous fire-fighting foam is used, were analysed. Of all the compounds detected in these environmental samples, 6:2 FTAB was found in the highest concentrations.  相似文献   

8.
Different extraction methods, including extraction by organic solvents with and without acetic acid digestion, and mixed inorganic acid digestion coupled with solid phase extraction (SPE), were developed for the analysis of perfluorinated carboxylic acids (PFCAs) and perfluorooctanesulfonate (PFOS) in bivalve shells. The extracts were separated, identified and quantified by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS/MS). The method utilizing mixed acid digestion coupled with SPE performed more efficiently than other extraction methods. Matrix recoveries of the optimized methods ranged from 92% to 104%, with limits of detection of 0.05–0.43 ng/g. The optimized method was successfully applied to the analysis of PFCAs and PFOS in shell samples of two bivalves from Bohai Bay, China. PFCAs and PFOS concentrations in the shells ranged from 0.3 ng/g to 4.1 ng/g, 1–50 times lower than those in the soft tissues of bivalves for most target analytes. No relationship between PFCAs and PFOS in shells and in soft tissues was found; this is explained by the different contaminant uptake mechanism of shells and soft tissues.  相似文献   

9.

A quantitative method for the determination of per- and polyfluoroalkyl substances (PFAS) using liquid chromatography (LC) tandem mass spectrometry (MS/MS) was developed and applied to aqueous wastewater, surface water, and drinking water samples. Fifty-three PFAS from 14 compound classes (including many contaminants of emerging concern) were measured using a single analytical method. After solid-phase extraction using weak anion exchange cartridges, method detection limits in water ranged from 0.28 to 18 ng/L and method quantitation limits ranged from 0.35 to 26 ng/L. Method accuracy ranged from 70 to 127% for 49 of the 53 extracted PFAS, with the remaining four between 66 and 138%. Method precision ranged from 2 to 28% RSD, with 49 out of the 53 PFAS being below < 20%. In addition to quantifying > 50 PFAS, many of which are currently unregulated in the environment and not included in typical analytical lists, this method has efficiency advantages over other similar methods as it utilizes a single chromatographic separation with a shorter runtime (14 min), while maintaining method accuracy and stability and the separation of branched and linear PFAS isomers. The method was applied to wastewater influent and effluent; surface water from a river, wetland, and lake; and drinking water samples to survey PFAS contamination in Australian aqueous matrices. The compound classes FTCAs, FOSAAs, PFPAs, and diPAPs were detected for the first time in Australian WWTPs and the method was used to quantify PFAS concentrations from 0.60 to 193 ng/L. The range of compound classes detected and different PFAS signatures between sample locations demonstrate the need for expanded quantitation lists when investigating PFAS, especially newer classes in aqueous environmental samples.

Graphical abstract

  相似文献   

10.
A trace analytical method based on high performance liquid chromatography coupled to quadrupole time-of-flight high resolution mass spectrometry was developed for simultaneous determination of perfluoroalkyl phosphonates (PFPAs, carbon chain lengths C6,8,10), perfluoroalkyl carboxylates (PFCAs, C5-12), and perfluoroalkyl sulfonates (PFSAs, C4,6,8,10) in drinking water (tap water). Analytes were enriched on a mixed mode co-polymeric sorbent (C8+quaternary amine) using solid phase extraction. Chromatographic separation was achieved on a Zorbax Extend C18 reversed phase column using a mobile phase gradient consisting of water, methanol, and acetonitrile containing 2mM ammonium acetate and 5 mM 1-methyl piperidine. The mass spectrometer was operated in electrospray negative ion mode. Use of 1-methyl piperidine in the mobile phase resulted in a significant increase in instrument sensitivity for PFPAs through improved chromatographic resolution, background suppression, and increased ionization efficiency. Method detection limits for extraction of 500 mL tap water were in the ranges of 0.095-0.17 ng/L, 0.027-0.17 ng/L, and 0.014-0.052 ng/L for PFPAs, PFCAs, and PFSAs, respectively. Whole method recoveries at a spiking level of 0.5 ng/L to 500 mL HPLC grade water were 40-56%, 56-97%, and 55-77% for PFPAs, PFCAs, and PFSAs, respectively. A matrix effect (signal enhancement) was observed in the detection of PFPAs in tap water extracts, leading to calculated recoveries of 249-297% at a 0.5 ng/L spiking level. This effect resulted in an additional improvement of method sensitivity for PFPAs. To compensate for the matrix effect, PFPAs in tap water were quantified using matrix-matched and extracted calibration standards. The method was successfully applied to the analysis of drinking water collected from six European countries. PFPAs were not detected except for perfluorooctyl phosphonate (PFOPA) at close to the detection limit of 0.095 ng/L in two water samples from Amsterdam, the Netherlands. Highest levels were found for perfluorobutane sulfonate (PFBS, 18.8 ng/L) and perfluorooctanoate (PFOA, 8.6 ng/L) in samples from Amsterdam as well as for perfluorooctane sulfonate (PFOS, 8.8 ng/L) in tap water from Stockholm, Sweden.  相似文献   

11.
Contaminants of emerging concern (CECs) such as per- and polyfluoroalkyl substances (PFAS) have attracted significant interest from researchers, policymakers, and water treatment facilities. This is because PFAS are highly persistent in the environment and tend to be bio-accumulative thus causing adverse effects on terrestrial and aquatic life. Therefore, there is a need for simpler and fast methods for the determination of PFAS in water sources. This work aims at the application of dispersive magnetic solid-phase extraction (DMSPE) for the enrichment of PFAS in various surface water samples. Magnetic Fe3O4@MIL-101 (Cr) was used as an adsorbent in MSPE. Fe3O4@MIL-101(Cr) was used for the first time for the preconcentration and extraction of PFAS in various river water samples. The concentrations of target analytes in water samples were determined using high performance liquid chromatography-diode array detector and ultra-high performance liquid chromatography-tandem mass spectrometry analysis. The combination of optimized DMSPE with HPLC-DAD and UHPLC-MS/MS provided wide linear range (1–5000 ng/L and 0.05–2000 ng/L, low limits of detection (0.3–0.66 ng/L and 0.011–0.04 ng/L) and limits of quantification (1.0–2.2 ng/L and 0.04–0.12 ng/L). Moreover, acceptable intraday and interday precision based on the relative standard deviation (RSD) lower than 5% were obtained. The developed method showed remarkable practicability for the analysis of ultra-trace PFAS in water samples.  相似文献   

12.
A novel technique utilizing the adsorptive potential of immobilized multi‐walled carbon nanotubes (I‐MWCNT) in hollow fiber liquid‐phase microextraction (HF‐LPME) was developed for the determination of diuretics in urine. In this study, the potential of carbon nanotubes as a sorbent for three‐phase liquid‐phase microextraction of diuretics from urine samples was evaluated. Analysis was performed using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). A novel method was applied to detect acetazolamide (AAA), chlorothiazide (CTA), hydrochlorothiazide (HCT), hydroflumethiazide (HFT), clopamide (CA), trichlormethiazide (TCM), althiazide (AT) and bendroflumethiazide (BFT) in urine. Two‐step extractions using different times and temperatures for each step were adopted. Parameters influencing the extraction efficiency, including the extraction solvent, sample pH, salt concentration, extraction time and extraction temperature were systematically optimized. Under the resulting optimal extraction conditions, this method showed good linearity over an analytes concentration range of 1 to 1000 ng/mL, high extraction repeatability with relative standard deviations of less than 6%, and low detection limits (0.09 to 0.51 ng/mL). The application of the methods to the determination of diuretics in real samples was tested by analyzing urine samples of patient.  相似文献   

13.
We developed a sensitive and useful method for the determination of five fluoroquinolones (FQs), enoxacin, ofloxacin, ciprofloxacin, norfloxacin, and lomefloxacin in environmental waters, using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC/MS/MS). These compounds were analysed within 7 min by high-performance liquid chromatography (HPLC) using a CAPCELL PAK C8 column and aqueous ammonium formate (pH 3.0, 5 mM)/acetonitrile (85/15, v/v) at a flow rate of 0.2 mL/min. Electrospray ionization conditions in the positive ion mode were optimized for MS/MS detection. In order to optimize the extraction of FQs, several in-tube SPME parameters were examined. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL of sample at a flow-rate of 150 μL/min, using a Carboxen 1010 PLOT capillary column as an extraction device. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase. Using the in-tube SPME LC/MS/MS method, good linearity of the calibration curve (r ≥ 0.997) was obtained in the concentration range from 0.1 to 10 ng/mL for all compounds examined. The limits of detection (S/N = 3) of the five FQs ranged from 7 to 29 pg/mL. The in-tube SPME method showed 60-94-fold higher sensitivity than the direct injection method (5 μL injection). This method was applied successfully to the analysis of environmental water samples without any other pretreatment and interference peaks. Several surface waters and wastewaters were collected from the area around Asahi River, and ofloxacin was detected in wastewater samples of a sewage treatment plant and other two hospitals at 17.5-186.2 pg/mL. The recoveries of FQs spiked into river water were above 81% for a 0.1 or 0.2 ng/mL spiking concentration, and the relative standard deviations were below 1.9-8.6%.  相似文献   

14.
This article describes the optimisation and validation of an analytical method for the determination of volatile polyfluorinated alkyl substances (PFAS) in environmental air samples. Airborne fluorinated telomer alcohols (FTOHs) as well as fluorinated sulfonamides and sulfonamidoethanols (FOSAs/FOSEs) were enriched on glass-fibre filters (GFFs), polyurethane foams (PUFs) and XAD-2 resin by means of high-volume air samplers. Sensitive and selective determination was performed using gas chromatography/chemical ionisation–mass spectrometry (GC/CI–MS). Five mass-labelled internal standard (IS) compounds were applied to ensure the accuracy of the analytical results. No major blank problems were encountered. Recovery experiments were performed, showing losses of the most volatile compounds during extraction and extract concentration as well as strong signal enhancement for FOSEs due to matrix effects. Breakthrough experiments revealed losses of the most volatile FTOHs during sampling, while FOSAs/FOSEs were quantitatively retained. Both analyte losses and matrix effects could be remediated by application of adequate mass-labelled IS. Method quantification limits (MQLs) of the optimised method ranged from 0.2 to 2.5 pg/m3 for individual target compounds. As part of the method validation, an interlaboratory comparison of instrumental quantification methods was conducted. The applicability of the method was demonstrated by means of environmental air samples from an urban and a rural location in Northern Germany. Figure High-volume air sampling of volatile polyfluorinated alkyl substances using glass fibre filters and PUF/XAD-2 cartridges at a background monitoring site (Waldhof, Germany)  相似文献   

15.
采用高效液相色谱-串联质谱仪建立了食品接触材料中6种全氟羧酸类化合物(PFCAs)残留量的检测方法。通过对超声、振荡和离子配对3种方法的比较,选择超声法作为提取食品接触材料中PFCAs的提取方法,提取时间为30 min,提取溶剂体积为10 mL。提取物经C18色谱柱分离后由串联质谱检测。最低检测限为0.5μg/kg,添加回收率在84.6%~114.6%之间。  相似文献   

16.
Determination of perfluorocarboxylic acids (PFCAs) by gas chromatography (GC) has been undertaken since 1980. However, only small number of studies can be found in the literature due to the major drawbacks associated with the GC determination of PFCAs such as high detection limits, a small range of analytes, long analysis time, and laborious derivatization prior to chromatographic separation. Liquid chromatography-tandem mass spectrometry (LC–MS2) can overcome these limitations of GC, and therefore has become the method of choice for the determination of PFCAs since 2001. Nevertheless, GC as a low-cost and commonly available analytical technique should not be ignored because of its inherent advantage over LC to identify PFCA isomers in environmental and biological matrices owing to its high-resolution power. In addition, GC provides an opportunity to crosscheck LC–MS2 results that are often suspicious due to background contamination. This tutorial provides an overview of GC methods that have been used for the determination of PFCAs after derivatization. Moreover, performance characteristics of GC–MS are compared with that of LC–MS2. PFCAs in aqueous samples were determined by both analytical techniques, and two sets of measurements were compared using the Bland-Altman plot. For both methods, reasons for false-positive and false-negative results (overestimation and underestimation of the PFCA concentration, respectively) are discussed, and accordingly some advice is offered on how to avoid erroneous results. Finally, major applications of GC and its future perspectives for the determination of PFCAs are discussed.  相似文献   

17.
A method using an online solid-phase extraction (SPE) and ion-pairing liquid chromatography with electrospray tandem mass spectrometry (LC/ES-MS/MS) was developed for determination of amphetamine (Amp), methamphetamine (mAmp), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxyethylamphetamine (MDEA), and 3,4-methylenedioxymethamphetamine (MDMA) in urine samples. A SPE cartridge column with both hydrophilic and lipophilic functions was utilized for online extraction. A reversed-phase C18 LC column was employed for LC separation and MS/MS was used for detection. Trifluoroacetic acid was added to the mobile phase as an ion-pairing reagent. This method was fully automated and the extraction and analysis procedures were controlled by a six-port switch valve. Recoveries ranging from 85-101% were measured. Good linear ranges (10-500 ng/mL) for Amp and mAmp were determined. For MDA, MDMA and MDEA, dual linear ranges were obtained from 5-100 and 100-500 ng/mL, respectively. The detection limit of each analytical compound, based on a signal-to-noise ratio of 3, ranged from 1-3 ng/mL. The applicability of this newly developed method was examined by analyzing several urine samples from drug users. Good agreement was obtained between the results from this method and a literature GC/MS method.  相似文献   

18.
A determination method has been optimized and validated for the simultaneous analysis of tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and doxycycline (DC) in honey. Tetracyclines (TCs) were removed from honey samples by chelation with metal ions bound to small Chelating Sepharose Fast Flow columns and eluted with Na2EDTA-Mcllvaine pH 4.0 buffers. Extracts were further cleaned up by Oasis HLB solid-phase extraction (SPE), while other solid-phase extraction cartridges were compared. Chromatographic separation was achieved using a polar end-capped C 18 column with an isocratic mobile phase consisting of oxalic acid, acetonitrile and methanol. LC with ultraviolet absorbance at 355 nm resulted in the quantitation of all four tetracycline residues from honey samples fortified at 15, 50, and 100 ng/g, with liner ranges for tetracyclines of 0.05 to 2 μg/mL. Mean recoveries for tetracyclines were greater than 50% with R.S.D. values less than 10% (n= 18). Detection limits of 5, 5, 10, 10 ng/g for oxytetracycline, tetracycline, chlortetracycline and doxycycline, respectively and quantitation limits of 15 ng/g for all the four tetracyclines were determined. Direct confirmation of the four residues in honey (2-50 ng/g) was realized by liquid chromatography-tandem mass spectrometry (LC/MS/MS). The linear ranges of tetracyclines determined by LC/MS/MS were between 5 to 300 ng/mL, with the linear correlation coefficient r〉 0.995. The limits of detection of 1 to 2 ng/g were obtained for the analysis of the TCs in honey.  相似文献   

19.
Two different isotope-dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods for the quantitative determination of folic acid (FA) in multivitamin/multielement tablets are reported. These methods represent distinct improvements in terms of speed and specificity over most existing microbiological and chromatographic methods for the determination of FA in dietary supplements. The first method utilizes an aqueous/organic-based extraction solvent combined with positive-ion mode LC/MS/MS detection of protonated [M + H]+ FA molecules and the second method utilizes a pure aqueous-based extraction solvent combined with negative-ion mode LC/MS/MS detection of deprotonated [M - H]- FA molecules. The LC/MS/MS methods exhibit comparable linear dynamic ranges (> or =3 orders of magnitude), limits of detection (0.02 ng on-column) and limits of quantification (0.06 ng on-column) for FA. Two methods employing different extraction and different MS detection modes were developed to allow method cross-validation. Successful validation of each measurement procedure supports the use of either method for the certification of FA levels in dietary supplements. The accuracy and precision of each measurement procedure were evaluated by applying each method to the quantitative determination of FA in a NIST standard reference material (NIST SRM 3280 multivitamin/multielement tablets). The FA measurement accuracy for both methods was > or =95% (based on the manufacturer's assessment of the FA level in SRM 3280) with corresponding measurement precision values (% RSD) of approximately 1%.  相似文献   

20.
The methodology for the determination of perfluorooctanoate (C(7)F(15)COO-, PFO), fluorotelomer alcohols (FTOHs: 6-2, 8-2, and 10-2), perfluorooctyl iodide (PFOI), and 8-2-8 fluorotelomer alcohol ester in complex fluorotelomer-based commercial products has been demonstrated and validated. Sample preparation procedures allowing determination of residual levels of these compounds were developed. The analytes were detected either by LC/MS/MS (PFO), LC/MS (FTOHs), or GC/MS (PFOI, 8-2-8 ester). The methods were validated by investigating the recoveries of analytes spiked at multiple levels to authentic sample matrices. The recoveries generally were between 70 and 130%. The limits of detection were in sub-microg/g range and the limits of quantitation were in the mug/g range. The methods were applied to fluorotelomer-based raw materials and fluorotelomer-based surfactants and polymeric products and represent methods useful for the determination of higher carbon chain length homologs as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号