首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Elastic softening materials are brittle materials such that crack extension is associated with a softening zone behind the crack tip, with the material elements within this zone exerting a restraining effect on the crack tip. Crack extension is sometimes characterised in terms of the stress intensity KF, due to the applied loadings, at the front of the softening zone, i.e. the actual crack tip. This paper is concerned with the determination of the maximum load KF value for a general positive geometrical configuration, for the case where the softening zone size is small compared with a solid's characteristic dimension. The resulting expression for KF is compared with the maximum load stress intensity value KT measured with regard to the initial crack position, i.e. the trailing edge of the softening zone.  相似文献   

2.
Fatigue crack growth studies have been conducted in a humid air environment for various martensite containing microstructures under low and high R-ratio testing conditions.Tempering reduced the yield strength properties; the greater the amount of martensite the greater the reduction.Tempering generally (i) increased the threshold for fatigue crack growth ΔKth, and (ii) decreased near threshold fatigue crack growth rates for both low and high R-ratio testing conditions. Also tempering inhibited the occurrence of subcritical transgranular cleavage in the high R-ratio tests of the ferrite-martensite microstructures and consequently affected Stage II fatigue crack growth behaviour.Finally the fully martensitic microstructure did not exhibit cracking and the present ΔKth data exhibited good agreement with other data for steels in the tempered condition.  相似文献   

3.
This paper examines the results of an extensive test program undertaken to study crack growth in D6ac steel and shows that in each case the increment in the crack length per cycle (da/dN) conforms to the Generalised Frost-Dugdale crack growth law. This is found to be true for both constant Kmax, constant R ratio load increasing, and compression-compression pre-cracking tests in the L-T, T-L and the S-T directions.  相似文献   

4.
Many brittle materials exhibit a time-independent behaviour, whereby the crack tip stress intensity (K) increases during crack growth (R). This increase is associated with the development of a ligament zone behind the crack tip, the restraining stresses due to the crack-bridging elements within this zone being responsible for the stress intensity increase. Theoretical analyses, based on the assumption of a constant restraining stress within the ligament zone, show that, for a prescribed crack-solid geometry configuration, although the K - R curve shape is independent of the loading conditions up to the full development of a ligament zone, the K and R values associated with this full development are critically dependent on the loading conditions. Particular attention is focused on the difference between bend and tensile loading of a finite width solid containing an edge crack.  相似文献   

5.
Cohesive zone failure models are widely used to simulate fatigue crack propagation under cyclic loading, but the model parameters are phenomenological and are not closely tied to the underlying micromechanics of the problem. In this paper, we will inversely extract the cohesive zone laws for fatigue crack growth in an elasto-plastic ductile solid using a field projection method (FPM), which projects the equivalent tractions and separations at the cohesive crack-tip from field information outside the process zone. In our small-scale yielding model, a single row of discrete voids is deployed directly ahead of a crack in an elasto-plastic medium subjected to cyclic mode I K-field loading. Damage accumulation under cyclic loading is captured by the growth of voids within the micro-voiding zone ahead of the crack, while the evolution of the cohesive zone law representing the micro-voiding zone is inversely extracted via the FPM. We show that the field-projected cohesive zone law captures the essential micromechanisms of fatigue crack growth in the ductile medium: from loading and unloading hysteresis caused by void growth and plastic hardening, to the softening damage locus associated with crack propagation via a void by void growth mechanism. The results demonstrate the effectiveness of the FPM in obtaining a micromechanics-based cohesive zone law in-place of phenomenological models, which opens the way for a unified treatment of fatigue crack problems.  相似文献   

6.
A three-point bend fixture has been designed, fabricated, and utilized to demonstrate the feasibility of performing in-situ J-testing at ambient and elevated temperatures inside a scanning electron microscope (SEM). Using the three-point bend test technique, in-situ SEM J-testing has been performed to measure the crack mouth opening displacement and crack extension as a function of the applied load in order to generate J-R curves for Zircaloy-4 at 25°C and 316°C. Once the J-R curve is determined, an equivalent KJ-resistance (KJ-R) curve is computed on the basis of a relationship between the J-integral (J) and the stress intensity factor (K). The J-R and KJ-R curves of Zircaloy-4 exhibit a rising R-curve behavior, while the elastic K-R curve underestimates the fracture resistance of Zircaloy-4 once substantial crack extension has occurred. For the specimen dimensions considered, the J-R curves generated by in-situ SEM J-tests are not sensitive to the specimen geometry and measure the actual fracture resistance of the material. Furthermore, the onset of crack extension is dictated by the emission of one or more slipbands from the crack tip, and a change in the crack-tip displacement field, followed by void formation along the slipband, and linkage of the voids with the main crack.  相似文献   

7.
One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during many cycles, as severe mesh distortion at the crack-tip results from the huge geometry changes developing during the cyclic plastic straining. In the present numerical studies, based on an elastic-perfectly plastic material model, crack growth computations are continued up to 200 full cycles by using remeshing at several stages of the plastic deformation. Three different values of the load ratio R=Kmin/Kmax are considered. It is shown that the crack-tip opening displacement, CTOD, typically undergoes a transient behaviour, with no crack closure during many cycles, before a steady-state cycling with crack closure at the tip starts to gradually develop.  相似文献   

8.
For crack growth along an interface between dissimilar materials the effect of combined modes I, II and III at the crack-tip is investigated. First, in order to highlight situations where crack growth is affected by a mode III contribution, examples of material configurations are discussed where mode III has an effect. Subsequently, the focus is on crack growth along an interface between an elastic-plastic solid and an elastic substrate. The analyses are carried out for conditions of small-scale yielding, with the fracture process at the interface represented by a cohesive zone model. Due to the mismatch of elastic properties across the interface the corresponding elastic solution has an oscillating stress singularity, and this solution is applied as boundary conditions on the outer edge of the region analyzed. For several combinations of modes I, II and III crack growth resistance curves are calculated numerically in order to determine the steady-state fracture toughness. For given values of KI and KII the minimum fracture toughness corresponds to KIII=0 in most of the range analyzed, but there is a range where the minimum occurs for a nonzero value of KIII.  相似文献   

9.
Crack growth resistance of shape memory alloys (SMAs) is dominated by the transformation zone in the vicinity of the crack tip. In this study, the transformation toughening behavior of a slowly propagating crack in an SMA under plane strain conditions and mode I deformation is numerically investigated. A small-scale transformation zone is assumed. A cohesive zone model is implemented to simulate crack growth within a finite element scheme. Resistance curves are obtained for a range of parameters that specify the cohesive traction-separation constitutive law. It is found that the choice of the cohesive strength t0 has a great influence on the toughening behavior of the material. Moreover, the reversibility of the transformation can significantly reduce the toughening of the alloy. The shape of the initial transformation zone, as well as that of a growing crack is determined. The effect of the Young's moduli ratio of the martensite and austenite phases is examined.  相似文献   

10.
Using the technique of Dimensional Analysis the phenomenon of crack closure is modelled using the concept of a contact stress intensity factor Kc. For constant amplitude loading, a simple expression, Kcmax = g(R) ΔK, is obtained without making idealized assumptions concerning crack tip behaviour. Further, by assuming that crack closure arises from the interaction of residual plasticity in the wake of the crack and crack tip compressive stresses, the function g(R) is shown to be constant for non-workhardening materials. This implies that any dependency of Kcmax on R must be attributed to the workhardening characteristic of the material. With Kc known, an “effective” stress intensity factor Ke may be calculated and incorporated into a crack growth law of the form da/dn = f(ΔKe). From analysis, it can be deduced that for a workhardening material, Kcmax will decrease as R increases and the effective stress intensity factor will increase. This means that the fatigue crack propagation rate will increase with R, in accordance with experimental observations.  相似文献   

11.
Crack bridging is an important source of crack propagation resistance in many materials and the bridging stress distribution as a function of crack opening displacement is widely believed to represent a true material property uninfluenced by sample geometry, loading conditions, and other extrinsic factors. Accordingly, accurate measurement of the bridging stress distribution is needed and many non-destructive methods have been developed. However, there are many challenges to accurately determining bridging stresses. A comparison of bridging stresses measured using R-curve, crack opening displacement (COD), and spectroscopy methods has been made using two bridging ceramics, Y2O3 and MgO doped Si3N4 and 99.5% pure Al2O3. The COD method is surface sensitive and gives a lower peak bridging stress compared to the R-curve technique which samples through the entire material thickness. This is attributed to a more compliant near surface bridging zone. Conversely, when R-curves rise steeply over the first few micrometers of growth from a notch, an effect of negative T-stress is expected to raise the R-curve determined peak bridging stress. Spectroscopy methods were only found to yield reliable bridging stress results if a reasonable through thickness volume of material is sampled. It was found that 2.5% of the specimen thickness achieved using fluorescence spectroscopy appears adequate for Al2O3 while 0.1–0.2% of the sample thickness achieved using Raman spectroscopy for Si3N4 appears inadequate. Overall, it is concluded that in the absence of T-stresses a bridging distribution can be determined that is a true material property. Also, a new method is proposed for determining the bridging stresses of fatigue cracks from (1) the bridging stress distribution for monotonically loaded cracks and (2) experimental fatigue data.  相似文献   

12.
The fatigue crack growth characteristics of CrlMo steel have been investigated at 861 K over the R-ratio range 0.1–0.7 utilising a dwell time of 10 min. at maximum load. All tests were conducted under load control in a laboratory air environment. It was established that the R-ratio significantly affected the fatigue crack extension behaviour inasmuch that with increasing R-ratio, the critical ΔK level for the onset of creep fatigue interactive growth, ΔKIG, decreased from 20 to 7 MPa√m and the threshold stress intensity, ΔKth, decreased from 9 to about 3 MPa√m. At intermediate ΔK levels, i.e. between ΔKth and ΔKIG, the fatigue crack extension rates, for all R-ratio values, resided on or slightly below the CTOD line, which represents the upper bound for contrnuum controlled fatigue crack growth. Creep fatigue interactive growth was typified by crack extension rates that reside above the CTOD line with a ΔKIG dependence; the attainment of some critical creep condition or crack linkage condition which causes the abrupt change in crack extension behaviour at ΔKIG; and crack extension occurs almost exclusively in an intergranular manner. The R-ratio and ΔKIG followed a linear relation. A literature review concerning the effect of temperature on the threshold fatigue crack growth characteristics of low alloy ferritic steels demonstrated powerful effects of temperature; the magnitude of these effects, however, were dependent upon the testing temperature regime and R-ratio level. The effect of R-ratio on ΔKth was greatest at temperatures >400°C, significant at ambient temperatures and least in the temperature range 90°C to <300°C. The relationship between temperature and ΔKth, at a given R-ratio, exhibited a through and a minimum ΔKth value was observed in the temperature range 200–250°C. The magnitude of the temperature effects on ΔKth decreased with increasing R-ratio. Such effects of temperature and R-ratio on ΔKth was reasonably explained in terms of crack closure effects. Finally, the present elevated temperature fatigue crack growth data exhibited massive crack extension enhancement values when compared to ambient near-threshold fatigue crack growth data for CrlMo steel. Such large enhancement values were the combined effects of temperature (environment) and frequency.  相似文献   

13.
Presented are the effect of stress ratio and thickness on the fatigue crack growth rate of CK45 steel according to DIN 17200. Test results are obtained for constant amplitude load in tension with three stress ratios of R=0, 0.2 and 0.4 and three specimen thicknesses of B=6, 12 and 24 mm. Microgauge crack opening values were used to calculate ΔKeff values from which the da/dN − ΔKeff curves are obtained. Crack closure can be applied to explain the influence of mean stress and specimen thickness on the fatigue crack growth rate in the second regime of the two-parameter crack growth rate relation. An empirical model is chosen for calculating the normalized load ratio parameter U as a function of R, B and ΔK and, for correlating the test data.  相似文献   

14.
The wedge splitting test is performed on notched shaped specimens that enables the determination of energies for large fracture surfaces and material exhibiting brittle behaviour. A stability condition is deduced and found to depend on the Young's modulus and the R-curve behaviour. The latter is defined by the fracture toughness KR and fracture energy Rc both of which depend on the crack length. A stable crack propagation is enhanced by high ratios of KR/KR and Rc/KR2. The wedge loading tends to behave like raising the rigidity of the testing machine. The results are applied on an example with a special geometry.  相似文献   

15.
Crack initiation and crack growth resistance in elastic plastic materials, dominated by crack-tip plasticity are analyzed with the crack modeled as a cohesive zone. Two different types (exponential and bilinear) of cohesive zone models (CZMs) have been used to represent the mechanical behavior of the cohesive zones. In this work, it is suggested that different forms of CZMs (e.g., exponential, bilinear) are the manifestations of different micromechanisms-based inelastic processes that participate in dissipating energy during the fracture process and each form is specific to each material system. It is postulated that the total energy release rate comprises the plastic dissipation rate in the bounding material and the separation energy rate within the fracture process zone, the latter is determined by CZMs. The total energy release rate then becomes a function of the material properties (e.g., yield strength, strain hardening exponent) and cohesive properties of the fracture process zone (e.g., cohesive strength and cohesive energy), and the form of cohesive zone model (CZM) that determines the rate of energy dissipation in the forward and wake regions of the crack. The effects of material parameters, cohesive zone parameters as well as the form/shape of CZMs in predicting the crack growth resistance and the size of plastic zone (SPZ) surrounding the crack tip are systematically examined. It is found that in addition to the cohesive strength and cohesive energy, the form (shape) of the traction–separation law of CZM plays a very critical role in determining the crack growth resistance (R-curve) of a given material. It is further observed that the shape of the CZM corresponds to inelastic processes active in the forward and wake regions of the crack, and has a profound influence on the R-curve and SPZ.  相似文献   

16.
The speed of Rayleigh surface waves, denoted CR, is the accepted upper limit for Mode I crack velocity in monolithic solids. In the current contribution, we discuss several critical issues associated with the velocity of Rayleigh surface waves and crack velocity in single crystal (SC) brittle solids, and the global and local influence of CR on crack path selection in particular.Recent cleavage experiments in SC silicon showed that crack velocity at certain cleavage planes and crystallographic orientations cannot exceed a small fraction of CR, and thereafter the crack deflects to other cleavage planes. Indeed, CR defined by the continuum mechanics ignores atomistic phenomena occurring during rapid crack propagation, and therefore is limited in predicting the crack velocity. Examination of these anomalies shows that this limitation lies in microstructural lattice arrangement and in anisotropic phonon radiation during rapid crack propagation. Globally, CR has no influence on the crack deflection phenomenon. However, the misfit in CR between the original plane of propagation and the deflected plane generates local instabilities along the deflection zone.  相似文献   

17.
This paper reports on the experimental examination of the deformation characteristics near a crack tip in a cyclically work-hardened copper single crystal using a 2D surface scans with nano-indentation. The experimental methodology enables the characterization of the primary deformation field near a crack tip via the modulation of the imposed secondary deformation field by a nano-indentation. In a heavily deformed 4-point bend specimen, the measurements showed an existence of an asymptotic field around the crack tip at a distance of R  2.5J/σ0. The measurements also showed the qualitative details of toughness evolution within the high-gradient deformation field around the crack tip. The nature of dislocation distribution (i.e. statistically distributed vs. distributions necessitated by geometry) around the crack tip is quantified. The measurements indicate the dominance of the geometrically necessary dislocation within the finite deformation zone ahead of the tip up to a distance of R  3J/σ0. Thereafter, it is confined in radial rays coinciding with the sector boundaries around the crack tip. These measurements elucidate the origin of the inhomogeneous hardening and the size dependent macroscopic response close to crack tip.  相似文献   

18.
The paper presents results from a theoretical analysis of the effect of a penny-shaped crack on the failure of an infinite solid that is subjected to tension loadings normal to the crack plane. The material is strain-softening and the fully developed softening zone size and the crack tip stress intensity K associated with the attainment of this state are shown to be very dependent on the initial crack size. For load control conditions, it is shown that complete failure can occur prior to the full development of a softening zone, the failure stress depending on the initial crack size. Particular emphasis is focused on the limiting situation where the failure stress approaches the limit stress, i.e. the maximum stress that the strain-softening material can sustain, and the effect of the strain-softening law on this limiting situation is determined.  相似文献   

19.
Modeling ductile fracture processes using Gurson-type cell elements has achieved considerable success in recent years. However, incorporating the full mechanisms of void growth and coalescence in cohesive zone laws for ductile fracture still remains an open challenge. In this work, a planar field projection method, combined with equilibrium field regularization, is used to extract crack-tip cohesive zone laws of void growth in an elastic-plastic solid. To this end, a single row of void-containing cell elements is deployed directly ahead of a crack in an elastic-plastic medium subjected to a remote K-field loading; the macroscopic behavior of each cell element is governed by the Gurson porous material relation, extended to incorporate vapor pressure effects. A thin elastic strip surrounding this fracture process zone is introduced, from which the cohesive zone variables can be extracted via the planar field projection method. We show that the material's initial porosity induces a highly convex traction-separation relationship — the cohesive traction reaches the peak almost instantaneously and decreases gradually with void growth, before succumbing to rapid softening during coalescence. The profile of this numerically extracted cohesive zone law is consistent with experimentally determined cohesive zone law in Part I for multiple micro-crazing in HIPS. In the presence of vapor pressure, both the cohesive traction and energy are dramatically lowered; the shape of the cohesive zone law, however, remains highly convex, which suggests that diffusive damage is still the governing failure mechanism.  相似文献   

20.
This paper describes the influence of material toughness degradation, through reversed temper embrittlement (RTE) and mean stress on the near threshold fatigue crack growth characteristics of a CrMoV turbine bolting steel at ambient and elevated temperatures. It was established at ambient temperatures that strong effects of R-ratio and material condition (toughness) were observed on near threshold fatigue crack growth characteristics. At elevated temperatures it was shown that for the non-embrittled material that only under low R-ratio conditions did increased temperature increase the level of threshold stress intensity ΔKth, by some 20%. In the case of embrittled material, increasing the temperature increased ΔKth levels by around 30% and decreased near threshold growth rates by an order of magnitude at low to intermediate R-ratio levels.The effects of R-ratio on ΔKth for all material and mechanical testing conditions could be simply expressed by the difference between ΔKth at R = O and a constant B multiplied by R.Quantitative fractographic observations indicated that, generally, the incidence of intergranular failure prevalent in embrittled and non-embrittled steels exhibited a maximum at some specific ΔK level. Also in embrittled steels large effects of environmental assisted crack (EAC) growth were observed at near threshold fatigue crack growth rates. It was suggested that this was the result of the much reduced material cohesive strength which was caused by the presence of both impurity and hydrogen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号