首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A graph H is imbedded in a graph G if a subset of the vertices of G determines a subgraph isomorphic to H. If λ(G) is the least eigenvalue of G and kR(H) = lim supd→∞ {λ(G)| H imbedded in G; G regular and connected; diam(G) > d; deg(G) > d}, then λ(H) ? 2 ≤ kR(H) ≤ λ(H) with these bounds being the best possible. Given a graph H, there exist arbitrarily large families of isospectral graphs such that H can be imbedded in each member of the family.  相似文献   

2.
The least eigenvalue of the 0-1 adjacency matrix of a graph is denoted λ G. In this paper all graphs with λ(G) greater than ?2 are characterized. Such a graph is a generalized line graph of the form L(T;1,0,…,0), L(T), L(H), where T is a tree and H is unicyclic with an odd cycle, or is one of 573 graphs that arise from the root system E8. If G is regular with λ(G)>?2, then Gis a clique or an odd circuit. These characterizations are used for embedding problems; λR(H) = sup{λ(G)z.sfnc;HinG; Gregular}. H is an odd circuit, a path, or a complete graph iff λR(H)> ?2. For any other line graph H, λR(H) = ?2. A similar result holds for complete multipartite graphs.  相似文献   

3.
We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected line graph of a claw free graph is hamiltonian connected. Another application of our main result shows that if L(G) does not have an hourglass (a graph isomorphic to K5E(C4), where C4 is an cycle of length 4 in K5) as an induced subgraph, and if every 3-cut of L(G) is not independent, then L(G) is hamiltonian connected if and only if κ(L(G))≥3, which extends a recent result by Kriesell [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected hourglass free line graph is hamiltonian connected.  相似文献   

4.
A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perfect [1,2]-factor FG, i.e. a spanning subgraph such that each component is 1-regular or 2-regular. Here, we characterize all well-covered graphs G satisfying α(G)=α(FG) for some perfect [1,2]-factor FG. This class contains all well-covered graphs G without isolated vertices of order n with α?(n-1)/2, and in particular all very well-covered graphs.  相似文献   

5.
An L(2,1)-labeling of a graph G is an assignment of nonnegative integers to the vertices of G so that adjacent vertices get labels at least distance two apart and vertices at distance two get distinct labels. A hole is an unused integer within the range of integers used by the labeling. The lambda number of a graph G, denoted λ(G), is the minimum span taken over all L(2,1)-labelings of G. The hole index of a graph G, denoted ρ(G), is the minimum number of holes taken over all L(2,1)-labelings with span exactly λ(G). Georges and Mauro [On the structure of graphs with non-surjective L(2,1)-labelings, SIAM J. Discrete Math. 19 (2005) 208-223] conjectured that if G is an r-regular graph and ρ(G)?1, then ρ(G) must divide r. We show that this conjecture does not hold by providing an infinite number of r-regular graphs G such that ρ(G) and r are relatively prime integers.  相似文献   

6.
Let G be a graph, A(G) its adjacency matrix. We prove that, if the least eigenvalue of A(G) exceeds -1 ? √2 and every vertex of G has large valence, then the least eigenvalue is at least -2 and G is a generalized line graph.  相似文献   

7.
An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. Let G 0 be the graph obtained from G by deleting all pendant vertices and δ(G) the minimum degree of vertices of G. In this paper, all connected tricyclic graphs G with δ(G 0) ≥ 2 and exactly two main eigenvalues are determined.  相似文献   

8.
《Discrete Mathematics》2002,231(1-3):311-318
An L(2,1)-labeling of graph G is an integer labeling of the vertices in V(G) such that adjacent vertices receive labels which differ by at least two, and vertices which are distance two apart receive labels which differ by at least one. The λ-number of G is the minimum span taken over all L(2,1)-labelings of G. In this paper, we consider the λ-numbers of generalized Petersen graphs. By introducing the notion of a matched sum of graphs, we show that the λ-number of every generalized Petersen graph is bounded from above by 9. We then show that this bound can be improved to 8 for all generalized Petersen graphs with vertex order >12, and, with the exception of the Petersen graph itself, improved to 7 otherwise.  相似文献   

9.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

10.
Let F(n,e) be the collection of all simple graphs with n vertices and e edges, and for GF(n,e) let P(G;λ) be the chromatic polynomial of G. A graph GF(n,e) is said to be optimal if another graph HF(n,e) does not exist with P(H;λ)?P(G;λ) for all λ, with strict inequality holding for some λ. In this paper we derive necessary conditions for bipartite graphs to be optimal, and show that, contrarily to the case of lower bounds, one can find values of n and e for which optimal graphs are not unique. We also derive necessary conditions for bipartite graphs to have the greatest number of cycles of length 4.  相似文献   

11.
We prove that the degree sequence of an infinite graph is reconstructible from its family of vertex-deleted subgraphs. Furthermore, as another result concerning the reconstruction of infinite graphs, we prove that the number c(G) of components of an infinite graph G is reconstructible if there is at least one vertex x in G with the following property: If x is deleted from G, then the component of G containing x splits into a finite number of components. In particular, this implies that c(G) is reconstructible if there is at least one vertex of finite degree in G.  相似文献   

12.
Let G be a connected graph with vertex-set V(G)and edge-set E(G).A subset F of E(G)is an s-restricted edge-cut of G if G-F is disconnected and every component of G-F has at least s vertices.Letλs(G)be the minimum size of all s-restricted edge-cuts of G andξs(G)=min{|[X,V(G)\X]|:|X|=s,G[X]is connected},where[X,V(G)\X]is the set of edges with exactly one end in X.A graph G with an s-restricted edge-cut is called super s-restricted edge-connected,in short super-λs,ifλs(G)=ξs(G)and every minimum s-restricted edge-cut of G isolates one component G[X]with|X|=s.It is proved in this paper that a connected vertex-transitive graph G with degree k5 and girth g5 is super-λs for any positive integer s with s 2g or s 10 if k=g=6.  相似文献   

13.
Ying Liu  Yue Liu 《Discrete Mathematics》2009,309(13):4315-1643
Fielder [M. Fielder, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305] has turned out that G is connected if and only if its algebraic connectivity a(G)>0. In 1998, Fallat and Kirkland [S.M. Fallat, S. Kirkland, Extremizing algebraic connectivity subject to graph theoretic constraints, Electron. J. Linear Algebra 3 (1998) 48-74] posed a conjecture: if G is a connected graph on n vertices with girth g≥3, then a(G)≥a(Cn,g) and that equality holds if and only if G is isomorphic to Cn,g. In 2007, Guo [J.M. Guo, A conjecture on the algebraic connectivity of connected graphs with fixed girth, Discrete Math. 308 (2008) 5702-5711] gave an affirmatively answer for the conjecture. In this paper, we determine the second and the third smallest algebraic connectivity among all unicyclic graphs with vertices.  相似文献   

14.
The spectral spread of a graph is defined to be the difference between the largest and the least eigenvalue of the adjacency matrix of the graph. A graph G is said to be bicyclic, if G is connected and |E(G)| = |V(G)|+ 1. Let B(n, g) be the set of bicyclic graphs on n vertices with girth g. In this paper some properties about the least eigenvalues of graphs are given, by which the unique graph with maximal spectral spread in B(n, g) is determined.  相似文献   

15.
A cyclic edge-cut of a graph G is an edge set, the removal of which separates two cycles. If G has a cyclic edge-cut, then it is called cyclically separable. We call a cyclically separable graph super cyclically edge-connected, in short, super-λc, if the removal of any minimum cyclic edge-cut results in a component which is a shortest cycle. In [Zhang, Z., Wang, B.: Super cyclically edge-connected transitive graphs. J. Combin. Optim., 22, 549-562 (2011)], it is proved that a connected vertex-transitive graph is super-λc if G has minimum degree at least 4 and girth at least 6, and the authors also presented a class of nonsuper-λc graphs which have degree 4 and girth 5. In this paper, a characterization of k (k≥4)-regular vertex-transitive nonsuper-λc graphs of girth 5 is given. Using this, we classify all k (k≥4)-regular nonsuper-λc Cayley graphs of girth 5, and construct the first infinite family of nonsuper-λc vertex-transitive non-Cayley graphs.  相似文献   

16.
We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel and Kühn [4, 5], which allows for infinite cycles, we prove that the edge set of a locally finite graph G lies in C(G) if and only if every vertex and every end has even degree. In the same way we generalise to locally finite graphs the characterisation of the cycles in a finite graph as its 2-regular connected subgraphs.  相似文献   

17.
This paper concerns finite, edge-transitive direct and strong products, as well as infinite weak Cartesian products. We prove that the direct product of two connected, non-bipartite graphs is edge-transitive if and only if both factors are edge-transitive and at least one is arc-transitive, or one factor is edge-transitive and the other is a complete graph with loops at each vertex. Also, a strong product is edge-transitive if and only if all factors are complete graphs. In addition, a connected, infinite non-trivial Cartesian product graph G is edge-transitive if and only if it is vertex-transitive and if G is a finite weak Cartesian power of a connected, edge- and vertex-transitive graph H, or if G is the weak Cartesian power of a connected, bipartite, edge-transitive graph H that is not vertex-transitive.  相似文献   

18.
We consider the existence of Hamiltonian cycles for the locally connected graphs with a bounded vertex degree. For a graph G, let Δ(G) and δ(G) denote the maximum and minimum vertex degrees, respectively. We explicitly describe all connected, locally connected graphs with Δ(G)?4. We show that every connected, locally connected graph with Δ(G)=5 and δ(G)?3 is fully cycle extendable which extends the results of Kikust [P.B. Kikust, The existence of the Hamiltonian circuit in a regular graph of degree 5, Latvian Math. Annual 16 (1975) 33-38] and Hendry [G.R.T. Hendry, A strengthening of Kikust’s theorem, J. Graph Theory 13 (1989) 257-260] on full cycle extendability of the connected, locally connected graphs with the maximum vertex degree bounded by 5. Furthermore, we prove that problem Hamilton Cycle for the locally connected graphs with Δ(G)?7 is NP-complete.  相似文献   

19.
For a connected graph the restricted edge‐connectivity λ′(G) is defined as the minimum cardinality of an edge‐cut over all edge‐cuts S such that there are no isolated vertices in GS. A graph G is said to be λ′‐optimal if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G defined as ξ(G) = min{d(u) + d(v) ? 2:uvE(G)}, d(u) denoting the degree of a vertex u. A. Hellwig and L. Volkmann [Sufficient conditions for λ′‐optimality in graphs of diameter 2, Discrete Math 283 (2004), 113–120] gave a sufficient condition for λ′‐optimality in graphs of diameter 2. In this paper, we generalize this condition in graphs of diameter g ? 1, g being the girth of the graph, and show that a graph G with diameter at most g ? 2 is λ′‐optimal. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 73–86, 2006  相似文献   

20.
On island sequences of labelings with a condition at distance two   总被引:1,自引:0,他引:1  
An L(2,1)-labeling of a graph G is a function f from the vertex set of G to the set of nonnegative integers such that |f(x)−f(y)|≥2 if d(x,y)=1, and |f(x)−f(y)|≥1 if d(x,y)=2, where d(x,y) denotes the distance between the pair of vertices x,y. The lambda number of G, denoted λ(G), is the minimum range of labels used over all L(2,1)-labelings of G. An L(2,1)-labeling of G which achieves the range λ(G) is referred to as a λ-labeling. A hole of an L(2,1)-labeling is an unused integer within the range of integers used. The hole index of G, denoted ρ(G), is the minimum number of holes taken over all its λ-labelings. An island of a given λ-labeling of G with ρ(G) holes is a maximal set of consecutive integers used by the labeling. Georges and Mauro [J.P. Georges, D.W. Mauro, On the structure of graphs with non-surjective L(2,1)-labelings, SIAM J. Discrete Math. 19 (2005) 208-223] inquired about the existence of a connected graph G with ρ(G)≥1 possessing two λ-labelings with different ordered sequences of island cardinalities. This paper provides an infinite family of such graphs together with their lambda numbers and hole indices. Key to our discussion is the determination of the path covering number of certain 2-sparse graphs, that is, graphs containing no pair of adjacent vertices of degree greater than 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号