首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
采用新型Ⅱ型动态断裂测试技术,对高强钢40Cr在高加载速率下的Ⅱ型动态断裂特性进行了测试研究。基于新设计的Ⅱ型动态断裂试样和分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)技术,通过实验-数值方法确定了裂尖在加载过程中的应力强度因子曲线。采用应变片法确定了试样的起裂时间,最终得到40Cr的Ⅱ型动态断裂韧性值,并对其加载速率相关性和材料的失效机理进行了研究。结果表明,在1.08~5.53 TPa·m1/2/s的加载速率范围内,40Cr的Ⅱ型动态断裂韧性基本表现为与加载速率成正相关的变化趋势。通过对试样断口形貌的分析,确定了材料的失效模式及机理,发现随着加载速率的增加,存在拉伸型失效向绝热剪切型失效模式转变的现象。  相似文献   

2.
采用基于霍普金森压杆的新型加载技术对Ti-6Al-4V材料的动态剪切特性及失效机理进行了测试研究。获得了Ti-6Al-4V材料在超过104 s-1应变率下的剪应力-剪应变曲线及失效参数。研究发现,材料的流动应力存在明显的应变率强化效应;随着应变率的增加,材料的失效应力逐渐增大,而失效应变逐渐减小。采用ABAQUS/Explicit对加载过程进行了数值模拟。结果显示,剪切区材料基本处于平面剪切状态,应力应变场分布较为均匀,计算得到的剪应力-剪应变曲线与实验结果吻合较好。经断口分析可知,随着应变率的升高,Ti-6Al-4V的失效机理存在由韧窝、拉伸韧窝至台阶及河流花样的演化过程,材料的失效模式主要表现为韧性断裂。  相似文献   

3.
High Impact Polystyrene (HIPS) is one of the first toughened systems in which the brittle polystyrene becomes more ductile with the addition of an elastomer. However, it exhibits a ductile behavior only above a certain temperature and below a certain loading rate. Fracture in this material, like in most toughened systems, can become brittle when the temperature is lowered or the loading rate is increased. The correlation between temperature and loading rate seems to be controlled by the molecular relaxation according to the Arrhenius equation. The objective of this work is to foster the understanding of the effects of time and temperature on the fracture behavior of HIPS. The time and temperature dependence in fracture performance has been found to be governed by the strain energy density criterion. The theory allows prediction of fracture performance at various loading rates and temperatures. The brittle–ductile transition is controlled by an energy activation process. A peak in fracture energy always occurs at the transition region. This is attributed to the relaxation of the polymer macromolecules. The time and temperature dependence of this relaxation can be predicted by the Arrhenius equation. The rise in fracture energy at high loading speeds is not due to the higher frequency oscillations from dynamic effect but is controlled by the critical strain energy density.  相似文献   

4.
A polycrystal finite element (FE) model describing the temperature evolution of low carbon steel is proposed in order to forecast the local mechanical fields as a function of temperature, for bainitic microstructure submitted to tri-axial loading. The model is designed for finite strains, large lattice rotations and temperatures ranging into the brittle–ductile transition domain. The dislocation densities are the internal variables. At low temperature in Body Centred Cubic (BCC) materials, plasticity is governed by double kink nucleation of screw dislocations, whereas at high temperature, plasticity depends on interactions between mobile dislocations and the forest dislocations. In this paper, the constitutive law and the evolution of the dislocation densities are written as a function of temperature and describe low and high temperature mechanisms. The studied aggregates are built from Electron Back Scattering Diffraction (EBSD) images of real bainitic steel. The aggregate is submitted to a tri-axial loading in order to describe the material at a crack tip. Mechanical parameters are deduced from mechanical tests. The local strain and stress fields, computed for different applied loadings, present local variations which depend on temperature and on tri-axial ratio. The distribution curves of the maximal principal stresses show that heterogeneities respectively increase with temperature and decrease with tri-axial ratio. A direct application of this model provides the evaluation of the rupture probability within the aggregate, which is treated as the elementary volume in the weak link theory. A comparison with the Beremin criterion calibrated on experimental data, shows that the computed fracture probability dispersion induced by the stress heterogeneities is of the same order than the measured dispersion. Temperature and stress tri-axiality ratio effects are also investigated. It is shown that these two parameters have a strong effect on fracture owing to their influence on the heterogeneous plastic strain. These inhomogeneities can initiate cleavage fracture.  相似文献   

5.
High Impact Polystyrene (HIPS) consists of a glassy polystyrene matrix and a rubber-like particle phase (gel phase). The extent of grafting of the gel phase is known to be an important parameter in the fracture toughness of the material. [1]. A simple quantitative model is developed in this paper to determine the extent of gel-particle grafting from the observed shifts in the glass transition temperature of the gel phase of three commercial types of HIPS.Although the increase in interfacial [2] and gel-particle grafting accounts for an increase in the energy absorbed before fracture at low strain rates, above a certain amount of grafting the material becomes embrittled at high strain rates. The adhesion factor A of mesophase models [3, 19], considered between the main phases of the material, was found to correlate with the observed impact behaviour.  相似文献   

6.
The purpose of this work is to investigate the influence of morphology, induced by cooling rate during molding, on the time–temperature dependence of fracture behavior of polypropylene (PP). Fractures tests were performed over a range of loading rates from 0.2 mm/min to 2.5 m/s, using the single edge notched bending specimen. The results show that the transition temperature from brittle to ductile behavior increases with decreasing cooling rate. However, at very low loading speed (0.2 mm/min), an opposite effect is observed, the brittle–ductile transition temperature diminishes with lower cooling rate. At low test speeds, the fracture performance is reduced with a decreasing cooling rate. Conversely, under impact, the fracture toughness of PP is enhanced with a decrease in cooling rate. This is explained by the mechanism of blunting of the crack tip due to adiabatic heating under high loading rates. The blunting effect results in a more significant plastic deformation of the crystalline region that requires a higher energy. The brittle–ductile transition was characterized by an energy activation process expressed by the Arrhenius equation. Decreasing the cooling rate results in a decrease of both the pre-exponential factor and the energy barrier controlling the time–temperature dependence of fracture behavior. The reduction of the pre-exponential factor corresponds to a more ordered morphology due to a reduction in the entropy and is consistent with a higher crystallinity. The reduction of activation energy with higher crystalline level suggests that the brittle–ductile transition also involves the primary relaxation process that is known to occur mostly in an amorphous structure. A higher crystallinity would restrain the primary relaxation processes and the brittle–ductile transition becomes more dependent on the secondary movements of the chain segments. The results demonstrate that the relationship between deformation rate, temperature, and mechanical performance of PP is not only controlled by molecular relaxation processes, but also strongly dependent on its morphology.  相似文献   

7.
为了研究应变率对准三维针刺碳纤维增韧的碳化硅复合材料(Cf/SiC)层向压缩力学性能的影响,本文利用分离式Hopkinson压杆装置对三维针刺Cf/SiC复合材料进行了应变率为10-4至6.5×103s-1的单轴压缩力学性能测试。实验结果表明,由于材料缺陷,其动态压缩强度分布遵循Weibull分布。破坏时,材料并未表现出典型的脆性破坏,而是在应力达到压缩强度后经历了较大的伪塑性变形才最终破坏。这表明三维针刺Cf/SiC复合材料沿厚度方向针刺的碳纤维有助于提高材料的韧性。同时,材料的压缩强度随应变率的升高显著增大,并与对数应变率近似成线性关系。借助光学显微镜和扫描电镜对压缩断口的观察表明:材料的失效模式随着应变率变化而发生改变。在准静态下,材料主要表现为剪切和分层破坏,而在高应变率下,则主要表现为劈裂。  相似文献   

8.
We present molecular dynamics simulations of [1 1 0]-oriented Si nanowires (NWs) under a constant strain rate in tension until failure, using the modified embedded-atom-method (MEAM) potential. The fracture behavior of the NWs depends on both temperature and NW diameter. For NWs of diameter larger than 4 nm, cleavage fracture on the transverse (1 1 0) plane are predominantly observed at temperatures below 1000 K. At higher temperatures, the same NWs shear extensively on inclined {1 1 1} planes prior to fracture, analogous to the brittle-to-ductile transition (BDT) in bulk Si. Surprisingly, NWs with diameter less than 4 nm fail by shear regardless of temperature. Detailed analysis reveals that cleavage fracture is initiated by the nucleation of a crack, while shear failure is initiated by the nucleation of a dislocation, both from the surface. While dislocation mobility is believed to be the controlling factor of BDT in bulk Si, our analysis showed that the change of failure mechanism in Si NWs with decreasing diameters is nucleation controlled. Our results are compared with a recent in situ tensile experiment of Si NWs showing ductile failure at room temperature.  相似文献   

9.
10.
在结构轻量化的进程中,新型薄板材料被大量使用,新兴的压印连接技术可以实现这些材料的连接.以钛合金为主要材料进行压印连接实验,结果显示材料的母材性能对连接性能、接头强度、失效形式均有一定的影响.压印接头的拉伸-剪切失效形式为颈部断裂时,拉伸-剪切实验过程中载荷位移曲线有两次明显的下降过程,分别是由于圆形压印点的上半部分颈部被拉断,圆压印点的下半部分颈部被拉断造成的.微观分析显示TA1-TA1压印接头断口呈现类解理穿晶断裂,5052-TA1压印接头断口出现拉长韧窝特征,属于塑性断裂,1420-TA1接头断口呈现大面积平面及少量冰糖状花样,属于沿晶脆性断裂.  相似文献   

11.
为研究Zr 基非晶合金动态压缩条件下的失效释能机理,采用力学试验机、霍普金森杆、高速摄影、差示扫描量热分析(differential scanning calorimetry, DSC)、扫描电镜(scanning electron microscope, SEM)等,得到了材料应力应变曲线、高速摄影图像、失效式样微观形貌及DSC 曲线,根据实验数据计算了材料的晶化激活能,并拟合了材料的JH-2(Johnson-Holmquist Ⅱ)模型,对材料动态失效过程进行有限元数值模拟。实验结果表明,压缩条件下材料为脆性断裂,断口处观察到典型的脉状纹样及液滴状结构,材料失效过程伴随着释能现象;数值模拟结果表明,材料裂纹局部的瞬时内能大于材料晶化激活能。动态压缩下材料的失效释能机理即为材料破碎释放储存的弹性势能,并导致材料局部晶化释能,释能强度与应变率成正相关。  相似文献   

12.
由加载速率和几何约束改变而引起的压力容器钢韧脆转变问题是核能安全领域亟待解决的关键问题. 为了准确分析国产A508-III钢的动态断裂行为, 借助INSTRON VHS高速材料试验机, 开展了不同加载速率和几何尺寸条件下的国产A508-III钢的断裂韧性试验, 研究了加载速率和几何尺寸等因素对国产A508-III钢动态断裂韧性的影响. 研究表明, A508-III钢具有良好的抗冲击韧性, 随着加载速率的提高, 试样的总冲击吸收能基本保持恒定, 裂纹萌生吸收能量不断上升, 而裂纹扩展吸收能量呈下降趋势. J-Δa阻力曲线和条件起裂韧性JQ随着几何约束的增加而降低, 随加载速率的增加而升高. 当达到某一临界速率时, 条件起裂韧性JQ基本恒定, 试样断裂方式也由韧性断裂转变为韧?脆?韧混合断裂. 由于出现混合断裂模式, 发生脆性断裂时的最大J积分值Jmax更适于描述国产A508-III钢的断裂韧性演化规律. 随着试样面外几何约束的降低, Jmax随Δam的增加而线性增大. 试样面内几何约束越高, Jmax与Δam之间的线性关系斜率越大. 随着试样几何约束的增加, 材料的韧脆转变速率增加, Jmax值下降. 改变几何约束只能在有限的加载速率范围内改变材料的断裂方式, 当加载速率超过某个临界值时, 加载速率成为影响材料断裂方式的主要因素.   相似文献   

13.
Conditions for discontinuous bifurcation in limit states of selective non-local thermodynamically consistent gradient theory for quasi-brittle materials like concrete are evaluated by means of both geometrical and analytical procedures. This constitutive formulation includes two internal lengths, one related to the strain gradient field that considers the degradation of the continuum in the vicinity of the considered material point. The other characteristic length takes into account the material degradation in the form of energy release in the cracks during failure process evolution.The variation from ductile to brittle failure in quasi-brittle materials is accomplished by means of the pressure dependent formulation of both characteristic lengths as described by Vrech and Etse (2009).In this paper the formulation of the localization ellipse for constitutive theories based on gradient plasticity and fracture energy plasticity is proposed as well as the explicit solutions for brittle failure conditions in the form of discontinuous bifurcation. The geometrical, analytical and numerical analysis of discontinuous bifurcation condition in this paper are comparatively evaluated in different stress states and loading conditions.The included results illustrate the capabilities of the thermodynamically consistent selective non-local gradient constitutive theory to reproduce the transition from ductile to brittle and localized failure modes in the low confinement regime of concrete and quasi-brittle materials.  相似文献   

14.
固体在冲击拉伸载荷作用下会断裂成多个碎片,基于线性内聚力断裂假设的Mott-Grady模型能较好地预测碎裂过程所产生的平均碎片尺度的下限。然而实际上,韧性金属的损伤演化是多元化的,为此通过数值模拟方法研究了不同损伤演化规律对韧性碎裂过程的影响。利用ABAQUS/Explicit动态有限元软件数值再现了韧性金属杆(45钢)在高应变率下拉伸碎裂的过程,分析了线性和非线性损伤演化对韧性碎裂过程的影响规律。结果表明:损伤演化规律对韧性金属的碎裂过程具有显著影响,非线性指标α越大,碎裂过程产生的碎片数越少;Grady-Kipp碎裂公式仍能在一定范围内预测韧性碎裂过程中产生的碎片尺寸;当非线性指标α远大于零时,在较低冲击拉伸载荷作用下,数值模拟结果和Grady-Kipp模型预测值偏差较大,随着应变率增大,数值模拟结果与Grady-Kipp模型预测值吻合较好。  相似文献   

15.
谢中秋  张蓬蓬 《实验力学》2013,28(2):220-226
利用INSTRON万能试验机和分离式Hopkinson压杆(SHPB)对PMMA试件在较宽应变率范围内进行了单轴压缩实验,研究加载应变率对PMMA材料力学性能的影响.利用扫描电子显微镜对回收的试样进行了显微观察,重点分析不同加载应变率下PMMA的微观损伤破坏模式.结果表明:随着应变率的增大,PMMA的流动应力显著地增加,且冲击加载条件下,峰值应力的应变率敏感性明显高于准静态;在准静态加载条件下,PMMA试样呈现明显的延性破坏特征,在动态加载条件下则表现为脆性破坏.最后,对PMMA材料的ZWT粘弹性本构模型参数进行了拟合,拟合结果与实验结果吻合较好,表明该本构模型能够较好地描述较宽应变率范围内PMMA材料的应力应变关系.  相似文献   

16.
金属材料在冲击下的韧脆转变现象和动态断裂韧性的测量是金属材料冲击力学性能研究的重要组成部分.针对金属材料在冲击下的韧脆转变现象认识不足和韧性材料在较低加载率下动态J-R阻力曲线难以测量的现状,提出了采用高速材料试验机,设计专用试验夹具,测量15MnTi钢和11MnNiMo钢在不同加载速率下的韧脆转变过程,以及裂尖约束对...  相似文献   

17.
利用电磁膨胀环实验技术,研究了7075铝环在2700~8700 s?1拉伸加载应变率下的断裂模式转变现象。实验结果表明:在低应变率下,铝环的断裂受最大正应力控制,发生拉伸断裂;在高应变率下,铝环的断裂受最大剪应力控制,发生剪切断裂;在中应变率下,铝环的断裂同时受最大正应力和最大剪应力控制,为拉伸和剪切同时存在的拉剪混合断裂模式;随着应变率的增加,铝环的破片数量呈先增加、再减小、最后增加的趋势,破片数量变化拐点与断裂模式转变点基本吻合。  相似文献   

18.
In structural materials with both brittle and ductile phases, cracks often initiate within the brittle phase and propagate dynamically towards the ductile phase. The macroscale, quasistatic toughness of the material thus depends on the outcome of this microscale, dynamic process. Indeed, dynamics has been hypothesized to suppress dislocation emission, which may explain the occurrence of brittle transgranular fracture in mild steels at low temperatures (Lin et al., 1987). Here, crack tip blunting and cleavage under dynamic conditions are explored using continuum mechanics and molecular dynamics simulations. The focus is on two questions: (1) whether dynamics can affect the energy barriers for dislocation emission and cleavage, and (2) what happens in the dynamic “overloaded” situation, in which both processes are energetically possible. In either case, dynamics may shift the balance between brittle cleavage and ductile blunting, thereby affecting the intrinsic ductility of the material. To explore these effects in simulation, a novel interatomic potential is used for which the intrinsic ductility is tunable, and a novel simulation technique is employed, termed as a “dynamic cleavage test”, in which cracks can be run dynamically at a prescribed energy release rate into a material. Both theory and simulation reveal, however, that the intrinsic ductility of a material is unaffected by dynamics. The energy barrier to dislocation emission appears to be identical in quasi-static and dynamic conditions, and, in the overloaded situation, ductile crack tip behavior ultimately prevails since a single emission event can blunt and arrest the crack, preventing further cleavage. Thus, dynamics cannot embrittle a ductile material, and the origin of brittle failure in certain alloys (e.g., mild steels) appears unrelated to dynamic effects at the crack tip.  相似文献   

19.
材料参数对韧性材料高应变率拉伸碎裂过程的影响   总被引:1,自引:0,他引:1  
Grady-Kipp将一个与断裂能量相关的内聚断裂模型引入Mott[1]的刚性卸载波分析,导出一个预测韧性材料在高速拉伸碎裂过程中产生碎片的平均尺度的计算公式[2]。为定量评估Grady-Kipp公式的适用程度,采用数值方法模拟了具有不同材料参数的一维弹塑性杆在高应变率拉伸过程中的碎裂现象。通过改变材料的断裂能 、密度 和应变率敏感系数c,模拟了杆在不同应变率 下的碎裂过程,研究了材料参数对碎裂时的碎片尺度、表观断裂应变和断口温升等的影响。通过对应变率和碎片尺寸进行无量纲化,证实Grady-Kipp公式在广泛的材料参数范围内能较好地预测碎裂过程中发生的碎片平均尺寸。  相似文献   

20.
A disk-shaped compact tension (DC(T)) test has been developed as a practical method for obtaining the fracture energy of asphalt concrete. The main purpose of the development of this specimen geometry is the ability to test cylindrical cores obtained from in-place asphalt concrete pavements or gyratory-compacted specimens fabricated during the mixture design process. A suitable specimen geometry was developed using the ASTM E399 standard for compact tension testing of metals as a starting point. After finalizing the specimen geometry, a typical asphalt concrete surface mixture was tested at various temperatures and loading rates to evaluate the proposed DC(T) configuration. The variability of the fracture energy obtained from the DC(T) geometry was found to be comparable with the variability associated with other fracture tests for asphalt concrete. The ability of the test to detect changes in the fracture energy with the various testing conditions (temperature and loading rate) was the benchmark for determining the potential of using the DC(T) geometry. The test has the capability to capture the transition of asphalt concrete from a brittle material at low temperatures to a more ductile material at higher temperatures. Because testing was conducted on ungrooved specimens, special care was taken to quantify deviations of the crack path from the pure mode I crack path. An analysis of variance of test data revealed that the prototype DC(T) can detect statistical differences in fracture energy resulting for tests conducted across a useful range of test temperatures and loading rates. This specific analysis also indicated that fracture energy is not correlated to crack deviation angle. This paper also provides an overview of ongoing work integrating experimental results and observations with numerical analysis by means of a cohesive zone model tailored for asphalt concrete fracture behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号