首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malinowski J 《Talanta》1967,14(2):263-265
A procedure is described for very precise determination of uranium in high-purity uranium and uranium compounds. Uranium(VI) is reduced in a concentrated hydrochloric acid solution by metallic aluminium in the presence of cadmium ions to uranium(III). This is oxidized to uranium(IV) by protons on addition of an excess of orthophosphoric acid, and then oxidized to uranium(VI) by adding a weighed quantity of potassium dichromate in small excess. The excess of potassium dichromate is determined by constant-current coulometry. The coefficient of variation does not exceed 0.003%.  相似文献   

2.
In this study, we demonstrate the preparation of a macroporous monolithic column containing anchored silver nanoparticles and its use for the elimination of excess radioiodine from the radiolabeled pharmaceutical. The poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith was first functionalized with cystamine and the free thiol groups liberated by reaction with borohydride. In‐house‐prepared silver nanoparticles were then attached by interaction with the surface thiols. The deiodization process was demonstrated with the commonly used radiopharmaceutical m‐iodobenzylguanidine labeled with radionuclide iodine‐125.  相似文献   

3.
应用旋转环盘电极(RRDE)等电化学方法研究了在不同pH条件下,在银/溴化银电极上,亚硫酸盐(SO32-)对菲尼酮-对苯二酚超加合体系(P-H2Q体系)显影反应速率的影响.结果表明,显影液中的亚硫酸盐不仅起保护显影剂的作用,而且影响显影反应速率.在较低pH下亚硫酸盐起抑制显影的作用,而在较高的pH下,会促进显影反应.这种现象可以认为主要是由于亚硫酸盐存在时,不同pH条件下,对苯二酚的氧化还原性质不同而引起的.  相似文献   

4.
Anodic stripping voltammetry of silver on a glassy carbon electrode, and application to the determination of silver in uranium and plutonium.The use of a glassy carbon electrode for the anodic stripping voltammetry of silver, without deposition of a preliminary mercury film is described. The deposition time, scan rate, rotation speed and molarity of the sulfuric solution have been studied; the method is applied to the determination of silver in uranium and plutonium.  相似文献   

5.
A new potentiometric method is adopted for the accurate microdetermination of arsenite, sulfide and sulfite. The reductant is added to a known excess of standard iodate or periodate properly acidified with sulfuric acid. To the brown solution containing iodine equivalent to the reductant, an excess of standard iodide solution is added followed by titrating unreacted iodide with mercury (II) potentiometrically using the silver amalgam as indicator electrode. The potential breaks which averaged 350 mV per 0.1 ml of 0.05 M titrant were sharp enough for the precise determination of end points, and hence the high accuracy of the present method. In addition, besides simplicity and rapidity the stoichiometry of the reaction between iodate or periodate with the above reductants is still maintained even with the very low concentration.  相似文献   

6.
A rapid and reliable determination of chromium was developed based on bromate oxidation of chromium(III) to chromium(VI). The reaction is complete under weakly acidic conditions and with cobalt(II) present as a catalyst. Unreacted bromate and chromium(VI) are then reduced with sulfite to bromide and chromium(III). The bromide is titrated potentiometrically with mercury(I) using a silver amalgam indicator electrode. Iron(III) if present is reduced by sulfite to iron(II) and does not interfere. Some binary and ternary metal mixtures containing chromium can be resolved by the determination of chromium, alone or with another metal, by the above procedure coupled with procedures for further sample portions involving the potentiometric titration of unreacted CyDTA or iodide, or both, with mercury(II).  相似文献   

7.
Fardon JB  McGowan IR 《Talanta》1972,19(11):1321-1334
A method is described for the simultaneous determination of plutonium and uranium in mixed oxides by controlled potential coulometry at a gold working electrode in two stages: first a coulometric oxidation, at 0.73 V vs. a silver/silver chloride electrode, of Pu(III) and U(IV) to Pu(IV) and U(VI) by a combination of a direct electrode reaction and a secondary chemical reaction proceeding concurrently, and secondly, a coulometric reduction at 0.33 V of Pu(IV) to Pu(III), leaving uranium as U(VI). The determination is carried out in a mixture of sulphuric and nitric acids, and Ti(III) is used to reduce plutonium and uranium to Pu(III) and U(IV) before electrolysis. The precision (3sigma) of Pu:U ratio results obtained from mixtures containing about 30% and 2% plutonium was 0.5% and 1-5% respectively. The effect of experimental variables on the time taken to complete the coulometric determination is discussed.  相似文献   

8.
Zusammenfassung Über die Vervielfachung von Milligrammengen Sulfid (Austauschreaktion mit Silberjodid) und von Mikrogrammengen Sulfat (Austauschreaktion mit Bariumjodat in acetonitrilhaltigem Medium) wurde berichtet. Das freigesetzte Jodid bzw. Jodat wird nach üblichen Methoden jodometrisch bestimmt. Ein großer Überschuß an Sulfit und annähernd äquimolare Mengen an Thiosulfat stören die Sulfidbestimmung nicht.
Employment of exchange reactions for the multiplication of sulfide and sulfate
Summary A report is given of the multiplication of milligram quantities of sulfide (exchange reaction with silver iodide) and of microgram amounts of sulfate (exchange reaction with barium iodate in a medium containing acetonitrile). The liberated iodide or iodate is determined iodometrically according to the usual procedures. A large excess of sulfite and approximately equimolar amounts of thiosulfate do not interfere with the sulfide determination.
  相似文献   

9.
We report on the amperometric determination of sulfite using screen-printed carbon electrodes (SPCEs) modified with gold and silver nanoparticles that were deposited on the electrode to improve the capabilities of detection. The electrode is fairly selective and responds to sulfite with an oxidation current (at 300 mV and pH 6) in the 9.80 to 83.33 μM concentration range. The precision in terms of repeatability and reproducibility is 14.4 % and 10.7 % in the case of SPCEs modified by gold nanoparticles. The method was applied to the determination of sulfite in drinking water, pickle juice and vinegar. Recoveries ranged from 96 % to 104 %.
Figure
Amperometric determination of sulfite using a sensor based on the immobilization gold nanoparticles on a disposable screen-printed carbon electrode  相似文献   

10.
An electroactive metal cyanometallate complex, nickel aquapentacyanoferrate (NAPCF) was synthesized and characterized using XRD and UV‐vis spectral studies. The solid complex was then mechanically immobilized on the surface of a paraffin impregnated graphite electrode (PIGE) and the NAPCF modified electrode was characterized using cyclic voltammetry. The dependence of the modified electrode was tested in terms of supporting electrolyte, scan rate and pH of the medium. The electrocatalytic oxidation of sulfite at the modified electrode was investigated by cyclic voltammetry, hydrodynamic voltammetry and chronoamperometry techniques. It was found that the NAPCF modified electrode efficiently exhibited electrocatalytic activity for the oxidation of sulfite with relatively high sensitivity, selectivity and long life of activity. Based on the electrocatalytic oxidation, the NAPCF modified electrode was used as a sensor for the determination of sulfite. The linear working range for the determination of sulfite was 2.78×10?6 M to 3.00×10?3 M with a detection limit of 9.26×10?7 M. The electrode was applied for the determination of sulfite in real samples satisfactorily.  相似文献   

11.
A simple method is described to determine sulfite in beer samples using a fill and flow channel biosensor. A droplet of sample is placed into the inlet of a rectangular flow cell and begins to flow through the channel by capillarity. The flow is maintained and controlled by a porous outlet plug of defined porosity. In a rectangular flow cell, the sample solution flows through three consecutive zones: over a predictor electrode, an enzyme layer and a detector electrode. Together these three zones enable the differentiation between current due to sulfite and current due to other electroactive species in the sample. The predictor electrode is located upstream, and on the opposite channel wall to the enzyme layer and detector electrode, and is poised at the same potential (+0.65 V versus Ag/AgCl) as the detector electrode. On this electrode, the current contribution from all species in the sample solution that are oxidized at that potential is determined. The enzyme layer contains sulfite oxidase, which, in the process of oxidizing sulfite, produces hydrogen peroxide, which itself is reduced by excess sulfite. The current at the downstream detector electrode is therefore different from that at the predictor electrode as a result of the enzyme reaction and the difference of the currents, corrected for the dimensions of the electrodes, is proportional to the concentration of sulfite. The method enables a straightforward correction of the interfering current at the detector electrode and a determination of the analyte concentration. The effect of interferences from ascorbic acid, ethanol, sorbic acid and tartaric acid in the detection of sulfite is efficiently removed. The concentration of sulfite in a sample of beer measured by the biosensor is equivalent to that measured using a reference method based on the AOAC-recommended Monier-Williams method.  相似文献   

12.
In this research, a modified electrode has been produced during the electropolymerization of 4-Aminobenzoic acid in the presence of sodium dodecylsulfate (SDS) and then Ni(II) ions were incorporated to the polymer by immersion of the modified electrode in a 0.1 M Ni(II) ions solution. The electrochemical behavior of Ni/poly(4-aminobenzoic acid)/sodium dodecylsulfate/carbon paste electrode (Ni/poly(4-AB)/SDS/CPE) was investigated by using cyclic voltammetry. The experimental results exhibited the stable redox behavior of the Ni(III)/Ni(II) couple immobilized at the polymeric electrode. This polymeric modified electrode has a very good activity toward the sulfite electrooxidation in a phosphate buffer solution (pH 11). By comparison of the different responses to sulfite oxidation using electrodes Ni/poly(4-AB)/SDS/CPE, poly(4-AB)/SDS/CPE and CPE, we observed that the former electrode is a more effective catalyst for the electrooxidation of sulfite. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 0.1–1 and 1–10 mM. The detection limit of the method was 0.063 mM. Finally, the method was applied to the determination of sulfite in weak liquor sample.  相似文献   

13.
Ikeda S  Satake H  Hisano T  Terazawa T 《Talanta》1972,19(12):1650-1654
Sulphide sulphur and dissolved sulphur in a polysulphide solution can be successively determined with satisfactory accuracy and reproducibility by potentiometric argentimetry in which a sulphide-selective indicator electrode is used. Before the titration, polysulphide ions need to be converted by an excess of potassium cyanide into thiocyanate and sulphide ions. The excess of cyanide ions is masked with formaldehyde and sulphuric acid, then the solution is made alkaline with ammonia and titrated with silver nitrate till the first end-point is reached (sulphide sulphur). After the acidification of the solution with sulphuric acid, the titration is continued till the second end-point is attained (dissolved sulphur).  相似文献   

14.
A potentiometric method has been developed for the determination of uranium using stannous chloride as reductant. The oxidation of excess stannous chloride was accomplished with an excess of sodium nitrite, the excess of which was destroyed by sulfamic acid. The U(IV) was then determined by potentiometric titration with standard potassium dichromate. For 3–5 mg amounts of uranium the precision obtained was better than 0.3%.  相似文献   

15.
Methods described in literature for the determination of free acid in solutions containing plutonium(IV), uranium(VI) and aluminium(III) were investigated for their applicability in the presence of uranium(IV). Most methods turned out to work in the presence of uranium(IV). The simplest procedure was the suppression of the uranium(IV) hydrolysis by complexation with excess of fluoride. No bias was observed in the presence of 0–30 mg of uranium(IV). A variance of 1.4% resulted from the determination of 0.4 millimole of acid in the presence of 26 mg of uranium(IV) and a variance of 0.26% was obtained when 2 millimoles of acid were determined in the presence of 130 mg of uranium(IV). Uranium(IV) from 30–260 mg in 250 ml caused a negative bias, which can be corrected for. — A concentration of potassium fluoride in the titration medium of 10 g/l turned out to be optimum. In 11/2 years more than 750 determinations were carried out with the same glass electrode and no destruction of the electrode was observed. The influence of uranium(VI), iron(III) and aluminium (III) on the determination of the free acid was also investigated.  相似文献   

16.
Zakhari N  Ibrahim F  Kovar KA 《Talanta》1989,36(7):780-782
A simple non-aqueous titration method has been devised for determining the sulphates of quinine and quinidine. The sulphate is precipitated by addition of excess of barium perchlorate solution in acetic and the liberated alkaloid is then titrated in 1:2 anhydrous acetic-dioxan mixture, with an acetic acid solution of perchloric acid. The end-point is determined either visually with Crystal Violet as indicator or potentiometrically with a glass-Ag/AgCl combination electrode. The method is accurate, precise and suitable for routine analysis of pure materials and tablets.  相似文献   

17.
Ito S  Asano Y  Wada H 《Talanta》1997,44(4):697-704
Characteristics of cadmium iondashselective electrode made cadmium sulphide (CdS)-silver sulphide (Ag(2)S) mixture were studied. CdS-Ag(2)S mixtures were obtained by gas/solid-phase reaction between silver-cadmium mixed powder and hydrogen sulphide gas (dry method) and by ionic reaction between cadmium-silver mixed ions and sulphide ion (wet method). As a result, it was found that the CdS-Ag(2)S mixture had to be made in the condition of excess existence of sulfur and had better regulate the excess sulfur quantity minimum, for the CdS-Ag(2)S pressed membrane gave a good Nernstian response against the cadmium ion concentration change. As the best way, CdS-Ag(2)S mixture was obtained by adding sulphide ion solution to 5 mol% cadmium ion and 95 mol% silver ion mixed solution while measuring silver sulphide (Ag(2)S) electrode potential as an indicator electrode. According to the reaction was stopped when the potential variation from the initial potential in the sulphide ion solution reached at 87-116 mV which the sulphide ion concentration became 10(-3) - 10(-4) of the initial concentration, the cadmium ion membrane pressed diameter of 8 mm and thickness of 2 mm showed a Nernstian response from 10(-8) to 10(-1) M of cadmium ion concentration. Furthermore, aiming to its application for industrial waste water, masking buffer for interfering metal ions such as lead ion (Pb(2+)) and copper ion (Cu(2+)), which were possibly coexisted and to adjust total ionic strength and pH of sample was developed. The present Cd(2+) iondashselective electrode was applied to the determination of Cd(2+) in the industrial waste water. The good regression line with correlation factor of 0.984 was obtained compared with the conventional atomic absorption spectroscopy.  相似文献   

18.
The electrocatalytic oxidation of sulfite has been studied at a stable electroactive thin film of copper‐cobalt hexacyanoferrate (CuCoHCF) hybrid electrodeposited on a carbon paste electrode (ECMCPE). A linear range of 5 μM to 5 mM of sulfite, with an experimental detection limit of 1 μM, was obtained using the cyclic voltammetric method. The oxidation of sulfite showed no significant fouling effect on the modified electrode surface at sulfite concentrations below 5 mM. The proposed modified electrode exhibited several attractive features, including simple preparation, fast response, good stability and repeatability, and could be applied to sulfite determination in real samples.  相似文献   

19.
Pszonicki L 《Talanta》1966,13(3):403-408
A procedure has been developed for the very precise determination of uranium in high-purity uranium compounds. Uranium(VI) is reduced in a strong hydrochloric acid solution with aluminium in the presence of cadmium ions to uranium(III). It is oxidised to uranium(IV) in the presence of excess orthophosphoric acid and then quantitatively oxidised to uranium(VI) with potassium dichromate using a potentiometric end-point detection. The coefficient of variation based on 20 analyses is -/+ 0.003%.  相似文献   

20.
The electrochemical response of a modified-carbon nanotubes paste electrode with p-aminophenol was investigated as an electrochemical sensor for sulfite determination. The electrochemical behaviour of sulfite was studied at the surface of the modified electrode in aqueous media using cyclic voltammetry and square wave voltammetry. It has been found that under the optimum condition (pH 7.0) in cyclic voltammetry, the oxidation of sulfite occurs at a potential about 680?mV less positive than that of an unmodified-carbon nanotubes paste electrode. Under the optimized conditions, the electrocatalytic peak current showed linear relationship with sulfite concentration in the range of 2.0?×?10?7–2.8?×?10?4?mol?L?1 with a detection limit of 9.0?×?10?8?mol?L?1 sulfite. The relative standard deviations for ten successive assays of 1.0 and 50.0?µmol?L?1 sulfite were 2.5% and 2.1%, respectively. Finally, the modified electrode was examined as a selective, simple and precise new electrochemical sensor for the determination of sulfite in water and wastewater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号