首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A great number of analyses is performed every year, the results of which are used for many purposes, e.g. the quality of goods and food, the status of quality of the environment or the health of patients. The accuracy of these results is a prerequisite for a good interpretation of the data obtained. One of the most powerful tool for achieving quality control of chemical analysis is to use reference materials (RMs) and certified reference materials (CRMs). These materials are necessary for one or more of the following items: method validation (CRMs), monitoring of the state of statistical control (RMs), samples in inter-comparisons (RMs), etc. The requirements and use of RMs and CRMs in chemical analysis are described, with special emphasis on environmental analysis, and some examples of environmental materials currently in production within the Standards, Measurements and Testing Programme (formerly BCR) of the European Commission are given.  相似文献   

2.
Several reference materials (RMs) and certified reference materials (CRMs) are widely used in Romania as measurement standards in different spectrochemical measurements. Among them, single element standard solution certified for their mass concentration play a key role in ensuring the required traceability of results expressed in this measurement unit. A short review of the locally available elemental RMs and CRMs used in atomic spectrometry or in other analytical techniques where aqueous standard solutions are required (usually called RMs or CRMs for spectrometry) is given. The experience of the INM in preparation and certification of such materials is described. Some aspects regarding their use for ensuring the accuracy and for confirmation of the traceability of analytical measurements, especially through calibration and metrological validation of main instrument performances, are discussed.  相似文献   

3.
Several reference materials (RMs) and certified reference materials (CRMs) are widely used in Romania as measurement standards in different spectrochemical measurements. Among them, single element standard solution certified for their mass concentration play a key role in ensuring the required traceability of results expressed in this measurement unit. A short review of the locally available elemental RMs and CRMs used in atomic spectrometry or in other analytical techniques where aqueous standard solutions are required (usually called RMs or CRMs for spectrometry) is given. The experience of the INM in preparation and certification of such materials is described. Some aspects regarding their use for ensuring the accuracy and for confirmation of the traceability of analytical measurements, especially through calibration and metrological validation of main instrument performances, are discussed.  相似文献   

4.
The accuracy and precision of the results obtained for total mercury in various environmental and biological samples and certified reference materials (CRMs) by various analytical methods, including k 0-instrumental neutron activation analysis (k 0-INAA), radiochemical neutron activation analysis (RNAA) and cold vapour atomic absorption (and atomic fluorescence) spectrometry (CVAAS/AFS) used in routine analysis in our laboratory, were investigated. Three natural matrix reference materials (RMs) from the International Atomic Energy Agency (IAEA), five CRMs from the Institute for Reference Materials and Measurements (IRMM), six CRMs from the National Institute of Standards and Technology (NIST) and one from the Jožef Stefan Institute (IJS) were analyzed. The results obtained show good agreement between certified or assigned values, and between the methods used, except for some data obtained by k 0-INAA in biological samples. This can be explained by losses during irradiation in semi-open systems (irradiation in plastic ampoules) and/or spectral interferences. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
A suite of natural matrix reference materials (RMs) were used to assess the quality of analytical results obtained by k 0-instrumental neutron activation analysis (k 0-INAA) at the Joef Stefan Institute (IJS). Five certified reference materials (CRMs) from the Institute for Reference Materials and Measurements (IRMM), two standard reference materials (SRMs) from the National Institute of Standards and Technology (NIST), three RMs from the International Atomic Energy Agency (IAEA) and one RM from IJS were analyzed. Altogether, results for twenty-four elements in inorganic matrices and twenty-nine elements in organic matrices, obtained by k 0-INAA, were compared to certified values. Results obtained show good agreement with certified or assigned values except for Fe, La, Nd, Sm and U in inorganic matrices, and Ag, Al and Cr in organic matrices.  相似文献   

6.
The use of reference materials (RMs) is a key activity for the improvement and maintenance of a worldwide coherent measurement system. As detailed in ISO Guide 33, RMs with different characteristics are used in measurement processes, for the purpose of precision control, bias assessment, calibration, assigning values to other materials, and maintaining conventional scales, to name a few. For the establishment of metrological traceability of measurement results to international scales or other measurement standards, proper use of certified reference materials (CRMs) is essential. From the perspective of a reference material producer, the documentation that is provided with an RM is the value-adding component of the material; for the user, the document is critical for the correct implementation and use of the RM in the measurement process. The ISO Committee on Reference Materials (ISO/REMCO) recognised the importance of the documentation that accompanies a reference material as early as 1981 when the first edition of ISO Guide 31 was published. The third edition of the Guide that was published recently considers the appropriate accompanying documentation for all types of reference materials, i.e. CRMs and non-certified RMs.  相似文献   

7.
The concern for the control of toxic chemical forms of elements in the environment is reflected by an increasing number of analyses performed by research and routine laboratories. The European Commission has recognised the need to include some of these species in the list of dangerous substances to be monitored, e.g. in the marine environment or in groundwater. However, in most cases, the specifications are far from being sufficient in respect to the chemical forms of the element to be determined. Furthermore, these determinations are in most cases based on multi-step analytical techniques which are often prone to errors (e.g. at the extraction, derivatization or separation steps). Certified reference materials (CRMs) certified for their content in chemical forms of elements are, therefore, necessary to ensure the accuracy of these measurements and hence the respect of the regulations. However, the lack of CRMs for speciation analysis hampers the quality control of determinations which in turn leads to an incomparability of data produced; so far the number of CRMs produced by international organisations, e.g. NIST (USA), NIES (Japan), NRCC (Canada) and BCR (Belgium), is very limited and concerns mainly compounds such as e.g. methyl-mercury and butyltin compounds in biological matrices or sediments. The Standards, Measurements and Testing Programme (formerly BCR) of the European Commission has started a series of projects for the improvement of speciation analysis in environmental matrices, the final aim of which being the production of a variety of environmental CRMs. The existing EU legislation involving chemical forms of elements is presented, the requirements for the preparation of CRMs for speciation analysis are discussed and an update of the most recent CRMs produced within the Standards, Measurements and Testing Programme (SM&T) is given.  相似文献   

8.
The concern for the control of toxic chemical forms of elements in the environment is reflected by an increasing number of analyses performed by research and routine laboratories. The European Commission has recognised the need to include some of these species in the list of dangerous substances to be monitored, e.g. in the marine environment or in groundwater. However, in most cases, the specifications are far from being sufficient in respect to the chemical forms of the element to be determined. Furthermore, these determinations are in most cases based on multi-step analytical techniques which are often prone to errors (e.g. at the extraction, derivatization or separation steps). Certified reference materials (CRMs) certified for their content in chemical forms of elements are, therefore, necessary to ensure the accuracy of these measurements and hence the respect of the regulations. However, the lack of CRMs for speciation analysis hampers the quality control of determinations which in turn leads to an incomparability of data produced; so far the number of CRMs produced by international organisations, e.g. NIST (USA), NIES (Japan), NRCC (Canada) and BCR (Belgium), is very limited and concerns mainly compounds such as e.g. methyl-mercury and butyltin compounds in biological matrices or sediments. The Standards, Measurements and Testing Programme (formerly BCR) of the European Commission has started a series of projects for the improvement of speciation analysis in environmental matrices, the final aim of which being the production of a variety of environmental CRMs. The existing EU legislation involving chemical forms of elements is presented, the requirements for the preparation of CRMs for speciation analysis are discussed and an update of the most recent CRMs produced within the Standards, Measurements and Testing Programme (SM&T) is given.  相似文献   

9.
A number of food-matrix reference materials (RMs) are available from the National Institute of Standards and Technology (NIST) and from Agriculture Canada through NIST. Most of these materials were originally value-assigned for their elemental composition (major, minor, and trace elements), but no additional nutritional information was provided. Two of the materials were certified for selected organic constituents. Ten of these materials (Standard Reference Material [SRM] 1,563 Cholesterol and Fat-Soluble Vitamins in Coconut Oil [Natural and Fortified], SRM 1,566b Oyster Tissue, SRM 1,570a Spinach Leaves, SRM 1,974a Organics in Mussel Tissue (Mytilus edulis), RM 8,415 Whole Egg Powder, RM 8,418 Wheat Gluten, RM 8,432 Corn Starch, RM 8,433 Corn Bran, RM 8,435 Whole Milk Powder, and RM 8,436 Durum Wheat Flour) were recently distributed by NIST to 4 laboratories with expertise in food analysis for the measurement of proximates (solids, fat, protein, etc.), calories, and total dietary fiber, as appropriate. SRM 1846 Infant Formula was distributed as a quality control sample for the proximates and for analysis for individual fatty acids. Two of the materials (Whole Egg Powder and Whole Milk Powder) were distributed in an earlier interlaboratory comparison exercise in which they were analyzed for several vitamins. Value assignment of analyte concentrations in these 11 SRMs and RMs, based on analyses by the collaborating laboratories, is described in this paper. These materials are intended primarily for validation of analytical methods for the measurement of nutrients in foods of similar composition (based on AOAC INTERNATIONAL's fat-protein-carbohydrate triangle). They may also be used as "primary control materials" in the value assignment of in-house control materials of similar composition. The addition of proximate information for 10 existing reference materials means that RMs are now available from NIST with assigned values for proximates in 6 of the 9 sectors of the AOAC triangle. Five of these materials have values assigned for total dietary fiber-the first such information provided for materials available from NIST.  相似文献   

10.
To address a fundamental need in stable isotope metrology, the National Institute of Standards and Technology (NIST) has established a web-based interactive data-processing system accessible through a common gateway interface (CGI) program on the internet site http://www. nist.gov/widps-co2. This is the first application of a web-based tool that improves the measurement traceability afforded by a series of NIST standard materials. Specifically, this tool promotes the proper usage of isotope reference materials (RMs) and improves the quality of reported data from extensive measurement networks. Through the International Atomic Energy Agency (IAEA), we have defined standard procedures for stable isotope measurement and data-processing, and have determined and applied consistent reference values for selected NIST and IAEA isotope RMs. Measurement data of samples and RMs are entered into specified fields on the web-based form. These data are submitted through the CGI program on a NIST Web server, where appropriate calculations are performed and results returned to the client. Several international laboratories have independently verified the accuracy of the procedures and algorithm for measurements of naturally occurring carbon-13 and oxygen-18 abundances and slightly enriched compositions up to approximately 150% relative to natural abundances. To conserve the use of the NIST RMs, users may determine value assignments for a secondary standard to be used in routine analysis. Users may also wish to validate proprietary algorithms embedded in their laboratory instrumentation, or specify the values of fundamental variables that are usually fixed in reduction algorithms to see the effect on the calculations. The results returned from the web-based tool are limited in quality only by the measurements themselves, and further value may be realized through the normalization function. When combined with stringent measurement protocols, two- to threefold improvements have been realized in the reproducibility of carbon-13 and oxygen-18 determinations across laboratories.  相似文献   

11.
To address a fundamental need in stable isotope metrology, the National Institute of Standards and Technology (NIST) has established a web-based interactive data-processing system accessible through a common gateway interface (CGI) program on the internet site http://www. nist.gov/widps-co2. This is the first application of a web-based tool that improves the measurement traceability afforded by a series of NIST standard materials. Specifically, this tool promotes the proper usage of isotope reference materials (RMs) and improves the quality of reported data from extensive measurement networks. Through the International Atomic Energy Agency (IAEA), we have defined standard procedures for stable isotope measurement and data-processing, and have determined and applied consistent reference values for selected NIST and IAEA isotope RMs. Measurement data of samples and RMs are entered into specified fields on the web-based form. These data are submitted through the CGI program on a NIST Web server, where appropriate calculations are performed and results returned to the client. Several international laboratories have independently verified the accuracy of the procedures and algorithm for measurements of naturally occurring carbon-13 and oxygen-18 abundances and slightly enriched compositions up to approximately 150% relative to natural abundances. To conserve the use of the NIST RMs, users may determine value assignments for a secondary standard to be used in routine analysis. Users may also wish to validate proprietary algorithms embedded in their laboratory instrumentation, or specify the values of fundamental variables that are usually fixed in reduction algorithms to see the effect on the calculations. The results returned from the web-based tool are limited in quality only by the measurements themselves, and further value may be realized through the normalization function. When combined with stringent measurement protocols, two- to threefold improvements have been realized in the reproducibility of carbon-13 and oxygen-18 determinations across laboratories.  相似文献   

12.
Certified reference materials (CRMs) have now been in regular use for several decades. Their production and certification are regulated by international standards. But, even today there are no agreements on procedures for evaluating results obtained by the users. As a consequence, the way CRM results are treated in the literature leaves a lot to be desired. A statistical evaluation is rarely, if ever, described in published reports. The most common approach is to compare the found mean and/or range with the certified range and then state if the mean falls within the certified range, or if the two ranges overlap. If this happens, the analyst is usually satisfied. In addition, usually no regard is paid to the fact that the certified interval is based on a 95% confidence interval (CI) and the found interval on standard deviation and that this evaluation has little, if any, statistical relevance. Long-term evaluation of a CRM often consists in nothing more than producing a control chart, which relates the found results to the certified mean and CI. This paper is an attempt to improve the situation by providing a set of easy-to-use guidelines for evaluating results from CRMs. During the process we have identified different areas in which there is a need for such guidelines: 1. short-term evaluation of a single, or multiple, determination at one or several specific times; 2. identification of systematic and random errors; 3. evaluation of CRMs when used in a collaborative trial of a method; and 4. long-term evaluation for monitoring an analytical process over extended periods of time. It is important that the guidelines do not require expert competence in statistics from the analyst. Such obstacles would probably render most guidelines unused.  相似文献   

13.
Certified reference materials (CRMs) have now been in regular use for several decades. Their production and certification are regulated by international standards. But, even today there are no agreements on procedures for evaluating results obtained by the users. As a consequence, the way CRM results are treated in the literature leaves a lot to be desired. A statistical evaluation is rarely, if ever, described in published reports. The most common approach is to compare the found mean and/or range with the certified range and then state if the mean falls within the certified range, or if the two ranges overlap. If this happens, the analyst is usually satisfied. In addition, usually no regard is paid to the fact that the certified interval is based on a 95% confidence interval (CI) and the found interval on standard deviation and that this evaluation has little, if any, statistical relevance. Long-term evaluation of a CRM often consists in nothing more than producing a control chart, which relates the found results to the certified mean and CI. This paper is an attempt to improve the situation by providing a set of easy-to-use guidelines for evaluating results from CRMs. During the process we have identified different areas in which there is a need for such guidelines: 1.?short-term evaluation of a single, or multiple, determination at one or several specific times; 2.?identification of systematic and random errors; 3.?evaluation of CRMs when used in a collaborative trial of a method; and 4.?long-term evaluation for monitoring an analytical process over extended periods of time. It is important that the guidelines do not require expert competence in statistics from the analyst. Such obstacles would probably render most guidelines unused.  相似文献   

14.
Increasing numbers of clinical laboratories are transitioning away from flame and electrothermal AAS methods to those based on ICP-MS. Still, for many laboratories, the choice of instrumentation is based upon (a) the element(s) to be determined, (b) the matrix/matrices to be analyzed, and (c) the expected concentration(s) of the analytes in the matrix. Most clinical laboratories specialize in measuring Se, Zn, Cu, and Al in serum, and/or Pb, Cd, Hg, As, and Cr in blood and/or urine, while other trace elements (e.g., Pt, Au etc.) are measured for therapeutic purposes. Quantitative measurement of elemental species is becoming more widely accepted for nutritional and/or toxicological screening purposes, and ICP-MS interfaced with separation techniques, such as liquid chromatography or capillary electrophoresis, offers the advantage of on-line species determination coupled with very low detection limits. Polyatomic interferences for some key elements such as Se, As, and Cr require instrumentation equipped with dynamic reaction cell or collision cell technologies, or might even necessitate the use of sector field ICP-MS, to assure accurate results. Nonetheless, whatever analytical method is selected for the task, careful consideration must be given both to specimen collection procedures and to the control of pre-analytical variables. Finally, all methods benefit from access to reliable certified reference materials (CRMs). While a variety of reference materials (RMs) are available for trace element measurements in clinical matrices, not all can be classified as CRMs. The major metrological organizations (e.g., NIST, IRMM, NIES) provide a limited number of clinical CRMs, however, secondary reference materials are readily available from commercial organizations and organizers of external quality assessment schemes.  相似文献   

15.
The elements Mn and V were determined by INAA in about 5 mg and 100 mg aliquots of NIST SRM 1648 to elucidate discrepancies between our previous results for the 0.5 mg to 15 mg aliquots and the NIST certified and/or information values. Simultaneously, other NIST SRMs 1633a, 2704, and BCR CRMs 038, 101 and 143 were also analyzed. Special attention was given to evaluating and minimizing uncertainties of all steps of analysis. Our results compared very well with the respective certified and/or information values (if available) of all SRMs and CRMs studied, except for NIST SRM 1648. For this SRM we have found significantly lower results than the NIST values which suggests that the NIST values are positively biased by about 10%. A new value for V in BCR CRM 143 was also obtained.  相似文献   

16.

Testosterone in human serum is commonly tested in clinical laboratories using immunoassay methods as well as liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. To standardize and ensure the accuracy of the measurement results, reference procedures with higher metrological order are required. A simple measurement procedure based on one-step liquid-liquid extraction (LLE) and liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) was developed for total testosterone in human serum. The procedure involved serum spiked with 13C3-testosterone, equilibration for 2 h, and extraction with an organic solvent. Testosterone certified reference material (CRM) was used as the calibration standard to ensure the traceability to the International System of Units (SI). Testosterone in serum CRMs from the National Institute for Standards and Technology (NIST) and LGC were used to validate the accuracy of the newly developed method. The deviations of the obtained values from the NIST and LGC certified values ranged from −0.55% to 0.45%. Similarly, the coefficient of variations (CVs) of the replicate measurements were in the range of 0.55% and 0.78%, respectively. The relative expanded uncertainties were comparable with those of the certified materials. The newly developed LC-IDMS/MS procedure demonstrated adequate trueness and precision, and was simple to perform. The method can be used for value assignment of testosterone in external quality assessment (EQA) materials as well as certification of CRMs in the future.

Graphical abstract

  相似文献   

17.
The objective of this work was to compare the results obtained by the relative INAA and k 0-INAA methods for the same input parameters (sample mass, nuclear data, net peak area for the same gamma line and the same measurement and same cooling and measurement times). In total eight environmental soil and sediment reference materials (RM) or certified reference materials (CRM) from different producers were analysed. In this work only the recommended or certified values were considered, allowing comparison of the two methods for 30 elements. The results point out that k 0-INAA possesses superior qualities compared to relative INAA, being insensitive to flux gradients, and independent of recommended/certified values in RMs/CRMs, often used as standards in relative INAA.  相似文献   

18.
A multi-agency workshop was held from 25 to 27 August 2009, at the National Institute of Standards and Technology (NIST), to identify and prioritize the development of radioanalytical Certified Reference Materials (CRMs, generally provided by National Metrology Institutes; Standard Reference Materials, a CRM issued by NIST) for field and laboratory nuclear measurement methods to be used to assess the consequences of a domestic or international nuclear event. Without these CRMs, policy makers concerned with detecting proliferation and trafficking of nuclear materials, attribution and retribution following a nuclear event, and public health consequences of a nuclear event would have difficulty making decisions based on analytical data that would stand up to scientific, public, and judicial scrutiny. The workshop concentrated on three areas: post-incident Improvised Nuclear Device (IND) nuclear forensics, safeguard materials characterization, and consequence management for an IND or a Radiological Dispersion Device detonation scenario. The workshop identified specific CRM requirements to fulfill the needs for these three measurement communities. Of highest priority are: (1) isotope dilution mass spectrometry standards, specifically 233U, 236gNp, 244Pu, and 243Am, used for quantitative analysis of the respective elements that are in critically short supply and in urgent need of replenishment and certification; (2) CRMs that are urgently needed for post-detonation debris analysis of actinides and fission fragments, and (3) CRMs used for destructive and nondestructive analyses for safeguards measurements, and radioisotopes of interest in environmental matrices.  相似文献   

19.
Nuclear analytical methods in quality control of microanalysis   总被引:1,自引:0,他引:1  
Quantitative calibration and quality control have been a major bottleneck in microanalysis due to the lack of natural-matrix CRMs certified at sample sizes compatible with those of unknown samples. In this paper, a solution is described to characterize sampling behavior for individual elements, so as to identify elements homogeneous enough at stated sample size levels in given CRMs/RMs. By using a combination of several nuclear analytical techniques, INAA-EDXRF-μPIXE, sampling behavior for individual elements can be characterized at sample size levels from grams down to pg. Natural-matrix CRMs specifically for QC of microanalysis may thus be created. Additional information in certificates of these new generation CRMs is imagined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Due to the limited number of environmental matrix certified reference materials (CRMs) with assigned values for natural levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), an interlaboratory study was undertaken by the National Institute of Standards and Technology (NIST) and Environment Canada to establish reference concentration values for selected PCDD/Fs in two well-characterized NIST Standard Reference Materials (SRMs): SRM 1649a (Urban Dust) and SRM 1944 (New York/New Jersey Waterway Sediment). Results from 14 laboratories were used to provide reference values for the seventeen 2, 3, 7, 8-substituted PCDD/F congeners, the totals for individual tetra- through hepta-substituted PCDD/F homologues, and the total amount of tetra-through hepta-substituted PCDD/Fs. The mass fractions for the individual 2, 3, 7, 8-substituted congeners range from approximately 0.01 μg/kg to 7 μg/kg dry mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号