首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical skin friction model for compressible, turbulent, internal, fully developed flow involving adiabatic and non-adiabatic, smooth and rough flows has been developed by extending the incompressible law-of-the-wall relation to compressible cases. The formula recovers Prandtl's incompressible law of friction for pipes (within 2%) for incompressible flow. The model also shows good correlation with available data for compressible, adiabatic flows and flows involving cold wall heat transfer (within 15%). Comparison with hot wall data is only moderate (15–30%). Finally, using Reynold's analogy, the Stanton number and Nusselt numbers may be estimated.  相似文献   

2.
In contrast to the conventional method of calculation account was taken of the dependence of viscosity on temperature and of the non-linear temperature profile due to subcooling of the condensate. Fully developed velocity and temperature profiles and a constant heat flux along the flow path are assumed. The local thickness of the film can be calculated with the usual equations provided the reference temperature of Drew [3] and Gregorig [4] for the viscosity (three-quarters of the wall temperature plus one-quarter of the film surface temperature) is used. The calculation of the local heat transfer coefficient and the mean condensate temperature (adiabatic mixing temperature), however, requires special equations taking into account the influences mentioned above.  相似文献   

3.
Narrow channel heat transfer technique is a new developing heat transfer technique in recent years. As the temperature of droplet, steam and wall are decided by forced convection heat transfer between the steam and the wall, between the droplet and the wall, between the steam and the droplet and radiation heat transfer, which makes heat transfer mechanism of dispersed flow be difficultly interpretative. Dispersed flow in narrow annular channel is analyzed in the paper, investigating the influence of all kinds of heat transfer processes on dispersed flow, building annular channel dispersed flow model using thermodynamic non-equilibrium model. Calculation results show heat transfer is mainly controlled by heat transfer process between steam and wall. When temperature is low, radiation can be ignored on heat transfer coefficient calculation. The calculation of model can provide a reference for engineering application of steam generator, refrigeration system and so on.  相似文献   

4.
In this study, the effect of heat transfer on the compressible turbulent shear layer and shockwave interaction in a scramjet has been investigated. To this end, highly resolved Large Eddy Simulations (LES) are performed to explore the effect of wall thermal conditions on the behavior of a reattaching free shear layer interacting with an oblique shock in compressible turbulent flows. Various wall-to-recovery temperature ratios are considered, and results are compared to the adiabatic wall. It is found that the wall temperature affects the reattachment location and the shock behavior in the interaction region. Furthermore, fluctuating heat flux exhibits a strong intermittent behavior with severe heat transfer compared to the mean, characterized by scattered spots. The distribution of the Stanton number shows a strong heat transfer and complex pattern within the interaction, with the maximum thermal (heat transfer rates) and dynamic loads (root-mean-square wall pressure) found for the case of the cold wall. The analysis of LES data reveals that the thermal boundary condition can significantly impact the wall pressure fluctuations level. The primary mechanism for changes in the flow unsteadiness due to the wall thermal condition is linked to the reattaching shear layer, which agrees with the compressible turbulent boundary layer theory.  相似文献   

5.
This article reports the measurements of time-resolved heat transfer rate and time-resolved static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. This data is discussed and analysed in the context of explaining the physical mechanisms that influence the casing heat flux. The physical size of the measurement domain was one nozzle guide vane-pitch and from −20% to +80% rotor axial chord. Additionally, measurements of the time-resolved adiabatic wall temperature are presented. The time-mean data from the same set of experiments is presented and discussed in Part I of this article. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 × 106 based on nozzle guide vane mid-height axial chord. The data reveal large temporal variations in heat transfer characteristics to the casing wall that are associated with blade-tip passing events and in particular the blade over-tip leakage flow. The highest instantaneous heat flux to the casing wall occurs within the blade-tip gap, and this has been found to be caused by a combination of increasing flow temperature and heat transfer coefficient. The time-resolved static pressure measurements have enabled a detailed understanding of the tip-leakage aerodynamics to be established, and the physical mechanisms influencing the casing heat load have been determined. In particular, this has focused on the role of the unsteady blade lift distribution that is produced by upstream vane effects. This has been seen to modulate the tip-leakage flow and cause subsequent variations in casing heat flux. The novel experimental techniques employed in these experiments have allowed the measurement of the time-resolved adiabatic wall temperature on the casing wall. These data clearly show the falling flow temperatures as work is extracted from the gas by the turbine. Additionally, these temperature measurements have revealed that the absolute stagnation temperature within the tip-gap flow can be above the turbine inlet total temperature, and indicates the presence of a work process that leads to high adiabatic wall temperatures as a blade-tip passes a point on the casing wall. It is shown that this phenomena can be explained by consideration of the flow vectors within the tip-gap, and that these in turn are related to the local blade loading distribution. The paper also assesses the relative importance of different time-varying phenomena to the casing heat load distribution. This analysis has indicated that up to half of the casing heat load is associated with the over-tip leakage flow. Finally, the implications of the experimental findings are discussed in relation to future shroudless turbine design, and in particular the importance of accounting for the high heat fluxes found within the tip-gap.  相似文献   

6.
The over-tip casing of the high-pressure turbine in a modern gas turbine engine is subjected to strong convective heat transfer that can lead to thermally induced failure (burnout) of this component. However, the complicated flow physics in this region is dominated by the close proximity of the moving turbine blades, which gives rise to significant temporal variations at the blade-passing frequency. The understanding of the physical processes that control the casing metal temperature is still limited and this fact has significant implications for the turbine design strategy. A series of experiments has been performed that seeks to address some of these important issues. This article reports the measurements of time-mean heat transfer and time-mean static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. Time-resolved measurements of these flow variables (that reveal the details of the blade-tip/casing interaction physics) are presented in a companion paper. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 × 106 based on nozzle guide vane mid-height axial chord. The axial and circumferential distributions of heat transfer rate, adiabatic wall temperature, Nusselt number and static pressure are presented. The data reveal large axial variations in the wall heat flux and adiabatic wall temperature that are shown to be primarily associated with the reduction in flow stagnation temperature through the blade row. The heat flux falls by a factor of 6 (from 120 to 20 kW/m2). In contrast, the Nusselt number falls by just 36% between the rotor inlet plane and 80% rotor axial chord; additionally, this drop is near to linear from 20% to 80% rotor axial chord. The circumferential variations in heat transfer rate are small, implying that the nozzle guide vanes do not produce a strong variation in casing boundary layer properties in the region measured. The casing static pressure measurements follow trends that can be expected from the blade loading distribution, with maximum values immediately upstream of the rotor inlet plane, and then a decreasing trend with axial position as the flow is turned and accelerated in the relative frame of reference. The time-mean static pressure measurements on the casing wall also reveal distinct circumferential variations that are small in comparison to the large pressure gradient in the axial direction.  相似文献   

7.
The present work is aimed to study mixed convection heat transfer characteristics for a lid-driven air flow within a square enclosure having a circular body. Flows are driven by the left lid, which slides in its own plane constant velocity. This wall is isothermal and it moves up or down in y direction while the other walls remain stationary. The horizontal walls are adiabatic. The cavity is differentially heated and the left wall is maintained at a higher temperature than the right wall. Three different temperature boundary conditions were applied for the inner cylinder as adiabatic, isothermal or conductive. The computation is carried out for wide ranges of Richardson numbers, diameter of inner cylinder and center and location of the inner cylinder. It was found that the most effective parameter on flow field and temperature distribution is the orientation of the moving lid. The circular body can be a control parameter for heat and fluid flow. An interesting obtained result that the thermal conductivity becomes insignificant for small values of diameter of the circular body.  相似文献   

8.
Tilting influences the flow patterns and thus the heat transfer and pressure drop during condensation in smooth tubes. However, few studies are available on diabatic two-phase flows in inclined tubes. The purpose of the present paper is to review two-phase flow in inclined tubes, with specific reference to condensation. Firstly, the paper reviews convective condensation in horizontal tubes. Secondly, an overview is given of two-phase flow in inclined tubes. Thirdly, a review is conducted on condensation in inclined tubes. It is shown for convective condensation in inclined tubes that the inclination angle influences the heat transfer coefficient. The heat transfer coefficient can be increased or decreased depending on the experimental conditions, and especially the flow pattern. Under certain conditions, an inclination angle may exist, which leads to an optimum heat transfer coefficient. Furthermore, this paper highlights the lack of experimental studies for the prediction of the inclination angle effect on the flow pattern, the heat transfer coefficient and the pressure drop in two-phase flows during phase change.  相似文献   

9.
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer, which is also an exact solution to the unsteady Navier-Stokes(NS) equations. The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions. The wall temperature and heat flux have power dependence on both time and spatial distance. The solution domain, the velocity distribution, the flow field, ...  相似文献   

10.
The present work develops a theoretical model of rotational convection and uses it to investigate the dynamical responses of the flow and heat transfer between two disks rotating at different rates under the influences of time-dependent disturbances. The unsteady non-isothermal flow model is formulated by extending a recently developed steady-state similarity model of axi-symmetric rotational convection. In the new model all the rotation-induced buoyancy forces are considered. Using one disk as reference, effects of the time-dependent changes in wall temperature or rotating rate of the other disk on the flow and heat transfer are explored. Various rotational modes with asymptotic or fluctuating change in boundary condition of temperature or disk rotation are studied. The present time-dependent model for this non-isothermal rotating flow is numerically solved by a finite-difference method. By using the present results, the complicated flow and heat transfer mechanisms with thermal-flow coupling in the class of time-dependent rotational convection are manifested.  相似文献   

11.
Forced convection heat transfer in fully developed flows of viscous dissipating fluids in concentric annular ducts is analyzed analytically. Special attention has been paid to the effect of the viscous dissipation. Two different cases of the thermal boundary conditions are considered: uniform heat flux at the outer wall and adiabatic inner wall (Case A) and uniform heat flux at the inner wall and adiabatic outer wall (Case B). Solutions for the velocity and temperature distributions and the Nusselt number are obtained for different values of the aspect ratio and the Brinkman number. The present analytical results for the case without the viscous dissipation effect are compared with those available in the literature and an excellent agreement is observed. To cite this article: M. Avc?, O. Ayd?n, C. R. Mecanique 334 (2006).  相似文献   

12.
Effects of a conductive wall on natural convection in a square porous enclosure having internal heating at a rate proportional to a power of temperature difference is studied numerically in this article. The horizontal heating is considered, where the vertical walls heated isothermally at different temperatures while the horizontal walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and finite difference method is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (0 ???Ra ???1000), the internal heating and the local exponent parameters (0 ????? ???5), (1 ????? ???3), the wall to porous thermal conductivity ratio (0.44 ???Kr ???9.9) and the ratio of wall thickness to its width (0.02 ???D ???0.5). The results are presented to show the effect of these parameters on the fluid flow and heat transfer characteristics. It is found a strong internal heating can generate significant maximum fluid temperature more than the conductive solid wall. Increasing value thermal conductivity ratio and/or decreasing the thickness of solid wall can increase the maximum fluid temperature. It is also found that at very low Rayleigh number, the heat transfer across the porous enclosure remain stable for any values of the thermal conductivity ratio.  相似文献   

13.
A fully implicit upwind finite difference numerical scheme has been proposed to investigate the characteristics of thermal entrance heat transfer in laminar pipe flows subject to a step change in ambient temperature. In order to demonstrate the results more clearly, a modified Nusselt number is introduced. The unsteady axial variations of modified Nusselt number, bulk fluid temperature, and wall temperature and the transient temperature profiles at certain axial locations are presented graphically for various outside heat transfer coefficients. The effects of the outside heat transfer coefficient on the heat transport processes in the flow are examined in detail. The results can be comprehensively explained by the interaction between the upstream convective heat transfer and the diffusion heat transfer in the radial direction. Steady state is reached when the axial convection balances the radial diffusion.  相似文献   

14.
Combined heat and mass transfer in free, forced and mixed convection flows along a porous wedge with internal heat generation in the presence of uniform suction or injection is investigated. The boundary-layer analysis is formulated in terms of the combined thermal and solute buoyancy effect. The flow field characteristics are analyzed using the Runge-Kutta-Gill method, the shooting method, and the local nonsimilarity method. Due to the effect of the buoyancy force, power law of temperature and concentration, and suction/injection on the wall of the wedge, the flow field is locally nonsimilar. Numerical calculations up to third-order level of truncation are carried out for different values of dimensionless parameters as a special case. The effects of the buoyancy force, suction, heat generation, and variable wall temperature and concentration on the dimensionless velocity, temperature, and concentration profiles are studied. The results obtained are found to be in good agreement with previously published works.  相似文献   

15.
The velocity field and wall heat transfer distributions for internal flows in the presence of longitudinal vortices have been experimentally investigated. A transient method based on temperature measurement with thermochromic liquid crystals was used to obtain the heat transfer distribution behind a tetrahedral, full-body vortex generator. With the focus on the longitudinal vortices, the flow field was captured by a three-component particle image velocimetry system. Mean values as well as velocity fluctuations have been assessed. The combined investigation of heat transfer and flow field describes in detail the physical conditions. For a channel Reynolds number of 300,000 a dataset has been obtained, which can be used for validation of numerical models.  相似文献   

16.
We study the MHD flow and also heat transfer in a viscoelastic liquid over a stretching sheet in the presence of radiation. The stretching of the sheet is assumed to be proportional to the distance from the slit. Two different temperature conditions are studied, namely (i) the sheet with prescribed surface temperature (PST) and (ii) the sheet with prescribed wall heat flux (PHF). The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The resulting non-linear momentum differential equation is solved exactly. The energy equation in the presence of viscous dissipation (or frictional heating), internal heat generation or absorption, and radiation is a differential equation with variable coefficients, which is transformed to a confluent hypergeometric differential equation using a new variable and using the Rosseland approximation for the radiation. The governing differential equations are solved analytically and the effects of various parameters on velocity profiles, skin friction coefficient, temperature profile and wall heat transfer are presented graphically. The results have possible technological applications in liquid-based systems involving stretchable materials.  相似文献   

17.
Analysis is made for the transient heat transfer phenomena in the thermal entrance region of laminar pipe flows. The transient results from both the change in flow field, a step change in pressure gradient from zero to a fixed value, and the change in thermal field, a step change in the inlet temperature. An exponential scheme has been employed to solve the energy equation with the presence of axial heat conduction in the fluid. In order to demonstrate the results more clearly, a modified Nusselt number is introduced. The unsteady axial variations of conventional Nusselt number, modified Nusselt number, bulk fluid temperature and pipe wall temperature are presented for water and air over a wide range of outside heat transfer coefficients. It is observed that the outside heat transfer coefficient has a significant influences on the transient heat transfer processes. The results can be comprehensively interpreted by the interactions among the axial convection, axial diffusion, and radial diffusion.  相似文献   

18.
Understanding the heat-release effects on the wall heat transfer in turbulent reacting flows, i.e. heat transfer with or without significant density variation, is essential for a wide variety of industrial flows, especially combustion problems. The present study focuses on the wall heat transfer and the near-wall reaction characteristics. The heat-release effects on the wall heat transfer and skin-friction coefficients are investigated using three-dimensional direct numerical simulations of a turbulent reacting wall-jet flow with and without heat release. Reductions in the skin-friction coefficient are observed in the exothermic case, compared to the isothermal one, and the underlying mechanism is explained. The absolute wall heat flux also increases, while the corresponding Nusselt number decreases with increasing heat release. Furthermore, the wall effects on the near-wall average burning rate are assessed. It is found that the isothermal cold wall results in an appreciable decrease of the burning rate in the exothermic cases. We observed indications that the wall increases the chances for the development of the premixed mode and its occurrence is very fast in the wall-normal direction.  相似文献   

19.
The unsteady conjugate conduction-natural convection in enclosure is of great theoretical significance and is widely encountered in engineering applications in the areas of fluid dynamics and heat transfer. However, there are relatively few efforts to investigate the unsteady flow physics and heat transfer characteristics in the inclined enclosure of finite thickness walls. In the present work, this problem is numerically investigated by a high accuracy multidomain temporal-spatial pseudospectral method. The enclosure is filled with Boussinesq fluid and is bounded by four finite thickness and conductive walls; one of the vertical sidewall is exposed to time-periodic temperature environment while the opposite sidewall holds constant temperature; the top and bottom walls are assumed to be adiabatic. Particular efforts are focused on the effects of three types of influential factors: the wall thermophysical properties, the time-periodic temperature patterns and the inclination, and the time-periodic flow patterns and heat transfer characteristics are presented. Numerical results reveal that within the present parameter range, the heat transfer rate increases almost linearly with the thermal conductivity ratio and thermal diffusivity ratio but decreases with the inclination angle. Moreover, the heat transfer could be enhanced or weakened by selecting different temperature pulsating period in the case of finite thickness wall, while it is always enhanced if the walls are zero thickness. The back heat transfer and heat transfer resonance phenomena are observed, and their relationships with the time-periodic flow patterns and temperature distributions are analyzed. The findings are helpful to the understandings of the fluid flow and heat transfer mechanisms in the related enclosure configurations, and may be of engineering use in thermal design improvement.  相似文献   

20.
The problem of enhancing the heat transfer in channels and boundary layers by the appropriate deformation of the fluid velocity profile is considered. The resulting additional hydraulic losses, the price of heat transfer enhancement, are determined. The possibilities of controlling heat transfer by redistributing the fluid velocity in channels are demonstrated with reference to flows at low Prandtl numbers. Laminar and turbulent liquid and gas flows with heat transfer in channels and boundary layers are numerically modeled on the basis of modern models of turbulence (flow development in channels with different initial velocity profiles, flows with wall roughness and boundary layer flows with forces acting on the flow to cause deformation of the velocity profile). In all cases it is found that the heat transfer can be enhanced only at the expense of a considerable increase in the hydaulic losses. A class of self-similar thermal problems for flows in plane diffusers is formulated. The eigenfunctions — temperature modes — for various velocity profiles are determined with allowance for the nonuniqueness of the solution of the classical dynamical problem for a plane diffuser and the corresponding heat transfer coefficients are found.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 94–105, May–June, 1993.The authors are grateful to A. Yu. Klimenko for useful discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号