首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feather fibers were modified by treatment with 5% tannic acid (TA) solution. Kinetics of the modification was investigated as a function of the reaction time. The maximum loading of TA on feather reached 8.3% after being treated by TA for 9 h. The adsorption of metal cations (Cu2+, Zn2+) by unmodified and TA-modified feather fibers was investigated as a function of fiber weight gain, temperature, and pH of the metal solution. The adsorption was enhanced at alkaline pH and ambient temperature and increased with the weight gain of TA. The maximum uptake of metal cations (Cu2+, 0.77 mmol/g; Zn2+, 0.95 mmol/g) was obtained by TA-modified feather at weight gain: 8.3%, pH 11, while at the acidic pH, the adsorption of metal cations by either unmodified or TA-modified feather was negligible. The influence of anions on the adsorption of metal cations was also studied. The uptake of Cu2+ from chloride was higher and faster than that from nitrate. Desorption of the metals was performed at acidic pH 2.5 for 48 h. The feather–TA–metal complexes exhibited higher stability for metal cations than the feather–metal complexes. All these experiments reveal that TA-modified feather fibers have good adsorption to metal cations and can be used as metal adsorbent in wastewater treatment.  相似文献   

2.
The equilibrium constants and thermodynamic parameters for complex formation of 18-Crown-6 (18C6) with Tl+, Pb2+, Hg2+, and Zn2+ metal cations have been determined by conductivity measurements in methanol (MeOH)-water (H2O) binary solutions. 18-Crown-6 forms 1:1 complexes with Hg2+ and Zn2+ cations, but in the case of Tl+ and Pb2+ cations, in addition to 1:1 stoichiometry, 1:2 (ML2) complexes are formed in some binary solvents. The thermodynamic parameters (ΔH c0 and ΔS c0), which were obtained from the temperature dependences of equilibrium constants, show that in most cases the complexes are enthalpy destabilized but entropy stabilized. Non-linear behavior is observed between the equilibrium constants (log K f ) of complexes and the composition of the mixed solvent. The selectivity of the ligand for these metal cations is sensitive to the solvent composition, and, in some cases, the selectivity order is reversed in certain compositions of the mixed solvent. The results also show that the mechanism of complexation reactions and the stoichiometry of complexes of some metal cations change with the nature and even with the composition of the mixed solvent. The article was submitted by the authors in English.  相似文献   

3.
A new stable chelating resin was synthesized by incorporating 2-aminothiophenol into Merrifield polymer through C-N covalent bond and characterized by elemental analysis, IR and thermal study. The sorption capacity of the newly formed resin for Hg2+ as a function of pH has been studied using 203Hg radioisotope. The resin exhibits no affinity to alkali or alkaline earth metal ions and common anions. The separation of mercury(II) in presence of different alkali and alkaline earth metal ions (Na+, K+, Mg2+, Ca2+, Sr2+, Ba2+), common anions (ClO4 , SO4 2−) and other diverse ions (Ag+, Cu2+, Pb2+, Fe3+, Ni2+ and Zn2+) has been checked. In column operation it has been observed that Hg2+ content of the waste water can be removed at usual pH of natural water. Mercury was determined by isotope dilution method and the concentration of Hg2+ in the waste water spiked with 203Hg was found to be 0.05 to 0.09 μg/ml.  相似文献   

4.
A new Schiff base fluorescence probe, 3-Allylsalicylaldehyde salicylhydrazone (L), for Mg2+ was designed and synthesized. The fluorescence of the sensor L was enhanced remarkably by Mg2+ with 2:1 binding ratio, and the binding constant was determined to be 1.02 × 107 M?1. Probe L had high sensitivity for Mg2+ in a solution of DMF/water (4:1, v/v, pH 7.5), and the detection limit was 4.88 × 10?8 mol/L. Common coexistent metal ions, such as K+, Na+, Ag+, Ca2+, Zn2+, Ba2+, Bi2+, Cu2+, Ni2+, Hg2+, Fe3+ , and Al3+, showed little or no interference on the detection of Mg2+ in solution. The fluorescence probe L, which was successfully used for the determination of trace Mg(II) in real samples, was shown to be promising for liquid-phase extraction coupled with fluorescence spectra.  相似文献   

5.
The ion-exchange equilibrium in network polymers obtained from cis-2,8,14,20-tetraphenyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]arene by template synthesis on cations Na+, K+, and Ba2+ as matrices was studied. The selectivity coefficients of ion exchanges Ba2+-H+, Na+-H+, K+-H+, Na+-K+, and Na+-NH4 + were determined. The template synthesis enhanced the affinity of the polymers to matrix-forming cations by 6–8 kJ mol−1. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1919–1922, August, 2005.  相似文献   

6.
The imidazol side group of histidine has two nitrogen atoms capable of being protonated or participating in metal binding. Hence, histidine can take on various metal-bound and protonated forms in proteins. Because of its variable structural state, histidine often functions as a key amino acid residue in enzymatic reactions. Ab initio (HF and MP2) calculations were done in modeling the cation (H+, Li+, Na+, K+, Mg2+, Ca2+) interaction with side chain of histidine. The region selectivity of metal ion complexation is controlled by the affinity of the side of attack. In the imidazol unite of histidine the ring nitrogen has much higher metal ion (as well as proton) affinity. The complexation energies with the model systems decrease in the following order: Mg2+ > Ca2+ > Li+ > Na+ > K+. The variation of the bond lengths and the extent of charge transfer upon complexation correlate well with the computed interaction energies.  相似文献   

7.
A new insoluble solid functionalized ligand system bearing chelating ligand group of the general formula P-(CH2)3-N[CH2CONH(C6H4)NH2]2, where P represents [Si–O] n polysiloxane network, was prepared by the reaction of the immobilized diethyliminodiacetate polysiloxane ligand system, P-(CH2)3N(CH2CO2Et)2 with 1,2-diaminobenzene in toluene. 13C CP-MAS NMR, XPS and FTIR results showed that most ethylacetate groups (–COOEt) were converted into the amide groups (–N–C=O). The new functionalized ligand system exhibits high capacity for extraction and removal of the metal ions (Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) with efficiency of 95–97% after recovery from its primary metal complexes. This functionalized ligand system formed 1:1 metal to ligand complexes.  相似文献   

8.
A solution of 2-(octylsulphanyl)benzoic acid in 1,2-dichloroethane was used as a liquid membrane for selective pertraction of Pb2+ cations. Transport processes were carried out in a multi-membrane hybrid system (MHS) consisting of two cation-exchange membranes (CEM) and a flowing liquid membrane (FLM) in the following order: CEM | FLM | CEM. The liquid membrane phase was dehydrated continuously using a pervaporation method (PV). The system was capable of transporting Pb2+ ions selectively from a multi-cation aqueous solution composed of Na+, K+, Ca2+, Mg2+, and Pb2+ nitrates. A comparative study of the carrier efficiency under various feed pH conditions was performed. It was found that the carrier exhibited sufficient selectivity and transport efficiency under a broad range of operational conditions, with a maximum transport rate of Pb2+ ions attaining the value of (1.09 ± 0.03) × 10−10 mol cm−2 s−1 and the selectivity coefficient of up to 40.  相似文献   

9.
An efficient highly diluted synthetic approach to the synthesis of 1,9-dicarbonyl-2,8-dioxo-butyne ester ferrocenophane (L) has been developed. The title compound was characterized by IR, UV, FL, 1H NMR, spectroscopies, elemental analysis and so on. Further complex L shows fluorescence responses to Co2+ and Cu2+ in CH3OH, The results indicate that the complex could be applied in multianayte detection. The binding ability of receptor L CH3OH was tested for various cations (Co2+, Cu2+, Zn2+, and Ni2+ in water) and the binding constants for Co2+ and Cu2+ were the computed, having a distinct absorbance shift. The receptor is a very attractive array because its distinct absorbance shift profile in a semi-aqueous phase, making it applicable in the area of biology, environmental sciences and material chemistry.  相似文献   

10.
Isothermal kinetics of copper (ion) binding to poly(acrylic acid) (PAA) hydrogel at 20, 25, 35 and 45°C was investigated. Isothermal conversions and kinetic curves of Cu2+ binding to the PAA hydrogel were determined. It was found that the well-known kinetic models of Peppas cannot be applied to describing the entire process of Cu2+ binding. The new method for the determination of the kinetic model of the Cu2+ binding process, as well as the activation energy density distribution functions of PAA hydrogel interaction with Cu2+, were established. It was found that Cu2+ diffusion to the active centers (with E a = 9 kJ/mol) has a dominant influence on the kinetics of the process at temperatures T ≥ 30°C, but at T ≥ 30°C and for the degree of bound Cu2+ α ≥ 0.2, the interaction of Cu2+ from the adsorption center with E a = 26 kJ/mol is dominant. The text was submitted by the authors in English.  相似文献   

11.
The complexation reactions between Ni2+, Cd2+ and Ag+ metal cations with the macrocyclic ligand Kryptofix22 (K22), in pure acetonitrile (AN), ethylacetate (EtOAc), methanol (MeOH) and their binary mixtures have been studied at different temperatures using conductometric method. The obtained results show that in most solvent systems, the stoichiometry of the complexes formed between the macrocyclic ligand and the metal cations is 1: 1 [ML], but in some of the solvent systems, a 1: 2 [ML2] complex and also [M2L], [M2L2] and [M2L3] complexes are formed in solutions. The stability constans of the 1: 1 complexes were obtained using a computer program GENPLOT. A non-liner behavior was observed for changes of logKf of the 1: 1 complexes versus the composition of AN–EtOAc binary solutions. The stability order of the 1: 1 complexes at 25°C in the binary solvent solution of AN–EtOAc (mol % AN = 50) was found to be: (K22.Ag)+ > (K22.Ni)2+ > (K22.Cd)2+. The obtained values of thermodynamic quantities (ΔHc0Sc0) show that in most of the AN–EtOAc binary solvent solutions, the 1:1 complexation reactions are enthropy stabilized, but from the enthalpy view point, depending on the nature and composition of mixed solvents they are exothermic or athermic.  相似文献   

12.
An efficient ion chromatographic (IC) method was developed for the simultaneous quantitative determination of Li+, Na+, NH4 +, K+, Cs+, Ca2+, Mg2+, Sr2+, Ba2+ and Be2+ in energy drinks, pharmaceutical and drinking water samples by non-suppressed conductometric detection. The separation of ten cations including ammonium was achieved using a cation-exchange column and low conductivity mobile phase. The mobile phase consisted of tartaric acid, dipicolinic acid and boric acid. The separation of the cations was completed in less than 18 min, with a flow rate of 1.2 mL min−1. The separation was not affected by the existence of cations Co2+, Cr3+, Cd2+, Cu2+, Bi3+, Ag+, Fe3+ and Zn2+ in concentrations up to 20 mg L−1. Using an injection volume of 20 μL the obtained detection limits were 0.003 mg L−1, 0.02 mg L−1, 0.01 mg L−1, 0.01 mg L−1, 0.10 mg L−1, 0.01 mg L−1, 0.02 mg L−1, 0.02 mg L−1, 0.003 mg L−1 and 0.1 mg L−1, for Li+, Na+, NH4+, K+, Cs+, Ca2+, Mg2+, Sr2+, Be2+ and Ba2+ respectively. The intra-day repeatability (RSD%, n=5) ranged from 1.1% to 4.8%, and the inter-day (n=5) between 1.8% and 5.4% respectively. The method was applied to the analysis of various bottled and tap water, pharmaceutical preparations and energy drinks commercially available.   相似文献   

13.
Hui Xu  Xiwen Zeng  Huiling Dai 《中国化学》2011,29(10):2165-2168
A new fluorescent chemosensor based upon 1,8‐naphthalimide and 8‐hydroxyquinoline was synthesized, and its fluorescent properties in the presence of different metal cations (Hg2+, Ag+, Zn2+, Fe2+, Cd2+, Pb2+, Ca2+, Cu2+, Mg2+, and Ba2+) were investigated. It displayed fluorescence quenching with some heavy and transition metal (HTM) ions, and the quenching strongly depended on the nature of HTM ions.  相似文献   

14.
The effects of La3+ on inward K+ channels at plasma membrane in vicia guard cells are investigated using the whole-cell patch-clamp recording mode. It is shown that La3+ on both sides of plasma membrane blocks inward K+ currents in a concentration-dependent manner, indicating that La3+ binding sites may exist on both sides of plasma membrane in guard cells in vicia. The dose response is fitted by the Michaelis-Menten relation characterized by an inhibitor constant K i of 2.56±0.25 μmol · L−1 (outside membrane) and (1.18±0.11)×10−15 mol · L−1 (inside membrane). Intracellular La3+ has much stronger inhibitory effect on inward K+ currents than extracellular La3+ does, suggesting there may exist stronger binding sites inside membrane than outside membrane. Since ion channel activities of guard cells directly affect plant stomatal movement and water status, our results imply that rare earth elements might have potential practical values in regulating plant water status and strengthening plant drought endurance.  相似文献   

15.
The complexation reaction between Tl+, Ag+ and Pb2+ cations with 2,6-di(furyl-2yl)-4-(4-methoxy phenyl)pyridine as a new synthesis ligand in acetonitrile (ACN)–H2O and methanol (MeOH)–H2O binary solutions has been studied at different temperatures using conductometric method. The conductometric data show that the stoichiometry of the complexes is 1: 1 [M: L] and the stability constant of complexes changes with the binary solutions identity. Also, the structure of the resulting 1: 1 complexes was optimized using the LanL2dz basis set at the B3LYP level of theory using GAUSSIAN03 software. The results show that the change of logKf for (DFMP.Pb)2+ and (DFMP.Ag)+ complexes with the mole ratio of acetonitrile and for (DFMP.Ag)+ and (DFMP.Tl)+ complexes with the mole ratio of methanol have a linear behavior, while the change of logKf of (DFMP.Tl)+complex in ACN–H2O binary solutions (with a minimum in XACN = 0.5) and (DFMP.Ag)+ complex in MeOH–H2O binary solutions (with a minimum in XMeOH = 0.75) show a non-linear behavior. The selectivity order of DFMP ligand for these cations in mol % CAN = 25 and 75 obtain Tl+ > Pb2+ > Ag+ but in mol % CAN = 50, the selectivity order observe Pb2+ > Tl+ > Ag+. Also, this selectivity sequence of DFMP in MeOH–H2O (mol % MeOH = 75 and 100) and (mol % MeOH = 50) is obtained Pb2+ > Ag+ and Tl+ > Ag+ > Pb2+ respectively. The values of thermodynamic parameters show that these values are influenced by the nature and the composition of binary solution. In all cases, the resulting complexes are enthalpy stabilized and entropy destabilized. The TΔSC° versus ΔHC° plot of all obtained thermodynamic data shows a fairly good linear correlation which indicates the existence of enthalpy-entropy compensation in the complexation reactions.  相似文献   

16.
Cadmium, a toxic heavy metal, poses a significant threat to human health. Currently, the methods for detecting cadmium residue in farm produce need expensive equipment, intensive labor, and much time to finish one detection. In this study, a direct competitive enzyme-linked immunosorbent assay (DC-ELISA) based on a cadmium-chelate-specific monoclonal antibody has been developed. The DC-ELISA showed an IC50 of 2.30 μg/L with a detection limit of 0.20 μg/L for cadmium. The assay has been demonstrated to be highly specific since the monoclonal antibody showed little or no cross-reactivity with all tested metal chelates which include Cd2+, Pb2+, Hg2+, Zn2+, Na+, Ca2+, Fe3+, Mg2+, Mn2+, Cu2+, Al3+, Co2+, Cr2+, Ni2+, Sn2, and K+. The assay showed that a mean recovery ranged from 100.47% to 103.86%, and the coefficients of variations for intra- and inter-assay were 1.73–7.14% and 3.63–6.81%, respectively. Then, several farm produces including wheat flour, apple juice, rice flour, and tea were analyzed for cadmium residue with DC-ELISA and graphite furnace atomic absorption spectroscopy (GFAAS). The correlation coefficient between the DC-ELISA and GFAAS was 0.99. It was demonstrated that the DC-ELISA can be used as a simple and economic method to detect and quantitate cadmium residue in farm produce.  相似文献   

17.
The electrical conductivity of a polymer based on tetraphenylcalix[4]resorcinarene in the form of H+, Na+, Li+, Ag+, and Ba2+ cations was measured, and the self-diffusion coefficients and activation energies of metal cation diffusion in the polymer phase were calculated. It was found that the specific conductivity of the polymer in the form of Ba2+ cations was 0.004 S/cm, increased to 0.01 S/cm when the polymer was in the form of singly-charged metal cations, and became as high as 0.2 S/cm when the polymer was transformed into the H form. It was shown that the self-diffusion coefficients of metal cations in the polymer phase increased in the sequence Ba2+ < Ag+, Li+ < Na+. The conclusion was made that, over the temperature range 298–333 K, the activation energy of metal cation diffusion in polymer was 14–15 kJ/mol and did not obviously depend on the cation charge. Original Russian Text ? G.N. Al’tshuler, E.V. Ostapova, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 6, pp. 1171–1174.  相似文献   

18.
The stability of complexes formed by a series of Schiff-base lariat ethers, derived from 4,13-diaza-18-crown-6, 1 with Ag+, Pb2+, Cu2+ cations, has been comparatively determined, in methanol: dichloromethane solution. We present here the synthesis and an interesting competitive potentiometry method useful for the stability constant determination for a new family of Schiff-base bibracchial lariat ethers. The stability constants and the selectivity in competitive complexation of Ag+, Pb2+ and Cu2+ cations by macrocyclic receptors 1–7 (L), can be accurately evaluated and species distribution diagrams can be calculated for individual system. In all cases further functionalization of bibracchial lariat ethers 2–7 is accompanied by an increasing of the selectivity, relative to the complexes of the initial 4,13-diaza-18-crown-6 macrocycle 1.  相似文献   

19.
Summary.  Solid crystalline calcium silicate hydrate (I) synthesized from equimolar amounts of Ca and Si under hydrothermal conditions at 120°C shows cation exchange properties towards divalent metal cations such as Ni, Cu, Cd, or Hg. It also exhibits caesium selectivity in the presence of Na+. The exchange capacity and selectivity of the solid can be increased by 10 and 28%, respectively, upon substitution of 0.01 mol of the Ca2+ in its structure by Na+. The ability of metal cation uptake by the solid was found to obey the order Ni2+ > Hg2+ > Cu2+ > Cd2+. The different affinities of calcium silicate hydrate (I) towards these ions can be used for their separation from solutions and also in nuclear waste treatment. The mechanism of the exchange reaction is discussed. Received June 11, 2001. Accepted September 10, 2001  相似文献   

20.
The complexation reactions between La3+, Y3+ and Ce3+ cations with the macrocyclic ligand, kryptofix 21, were studied in methanol-acetonitrile (MeOH-AN) and methanol-methylacetate (MeOHMeOAc) binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that in most solvent systems, the kryptofix 21 forms a 1: 1 [M: L] complex with La3+, Y3+ and Ce3+ metal cations, but in the case of Y3+ cation in pure methylacetate, in addition of formation of a 1: 1 [ML] complex, 1: 2 [ML2] and 1: 3 [ML3] complexes are formed in solution. In the case of Ce3+cation, a 1: 1 [ML] and also a 1: 2 [ML2] complexes are formed in this solvent system at all studied temperatures. The electrical conductance data in acetonitrile, show that a 1: 1 [ML] and also a 1: 2 [ML2] complexes are formed between the ligand and La3+ and Ce3+ metal cations at different temperatures. The stability constants of the 1: 1 [ML] complexes were determined using the conductometric data and a computer program, GENPLOT. A non-monotonic relationship was observed between logK f of the 1: 1 complexes with the composition of the binary solvent solutions which was discussed in term of solvent-solvent interactions and also preferential solvation of the metal cations and the ligand in solutions. The selectivity order of the ligand for the metal cations in MeOH–AN and MeOH–MeOAc binary solvent solutions, at 25°C was found to be: Y3+ > La3+ > Ce3+ and La3+ > Y3+ > Ce3+, respectively. The values of the standard thermodynamic quantities (ΔH c ° and ΔS c ° ) for formation of the 1: 1 complexes were obtained from temperature dependence of the stability constans of the complexes and the results show that the thermodynamics of the complexation reactions between kryptofix 21 and La3+, Y3+ and Ce3+ cations, is affected by the nature and composition of the mixed solvents systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号