首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
High output power 40 GHz 1.55 μm passively mode-locked surface-etched distributed Bragg reflector (DBR) lasers with monolithically integrated semiconductor optical amplifiers are reported. These are based on an optimized AlGaInAs/InP epitaxial structure with a three quantum well active layer and an optical trap layer. The device produces near transform limited Gaussian pulses with a pulse duration of 3.3 ps. An average output power during mode-locked operation of 130 mW was achieved with a corresponding peak power of >1 W.  相似文献   

2.
3.
黄莉蕾  付晏彬  邬良能 《中国物理》2003,12(12):1417-1422
The absorption spectra of Tb,Tm:YVO_4 and Ho,Tm:YVO_4 are measured. The radiant and non-radiant transition probabilities from higher level to lower level, A_{i,j} and ω_{i,j}, and the cross-elaxation probability are calculated in virtue of Judd-Ofelt and Dexter theories. The fluorescence lifetime of Tm^{3+} in the Tb^{3+} (or Ho^{3+}) co-doped crystal is calculated. It indicates that the lifetime of initial level {}^3H_4 of the laser transition can be shorter than that of terminal level {}^3F_4 of the transition if the atomic percentage of Tb^{3+} (or Ho^{3+}) ions is bigger than about 1 at%: namely, by means of the co-doping Tb^{3+} (or Ho^{3+}) ions the self-termination phenomenon of laser light can be eliminated. Inserting the optic parameters to the formula deduced here on the laser threshold power P^{(4)}_{th} and the slope efficiency η^{(4)}_s of the four-energy-level system, we obtain the relationship of threshold power P^{(4)}_{th} to the concentration of Tm^{3+} ions and discuss the effect of Tb^{3+} (or Ho^{3+}) ion concentration on the laser threshold power P^{(4)}_{th} around 1.5μm wavelength. The result shows that Tb,Tm:YVO_4 crystal is a better choice to make the laser at ~1.5μm wavelength than Ho,Tm:YVO_4 crystal. We give the appropriate composition of (1-2) at% Tb, (1-2) at% Tm:YVO_4, just for reference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号