首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlinear evolution of thin liquid films dewetting near soft elastomeric layers is examined in this work. Evolution equations are derived by applying the lubrication approximation and assuming that van der Waals forces in the liquid cause the dewetting and that the solid can be described as a linear viscoelastic material. Two cases are examined: (i) a liquid layer resting on an elastomer bounded from below by a rigid substrate, and (ii) an elastomer overlying a thin liquid film bounded from below by a rigid substrate. Linear stability analysis is carried out to obtain asymptotic relations which are then compared against solutions of the full characteristic equations. In the liquid-on-solid case, numerical solutions of the evolution equations show that van der Waals forces cause thinning of the liquid film and thickening of the elastomeric solid beneath film depressions. Inclusion of a short-range repulsive force suggests that regular patterns may form in which ridges of fluid rest on depressions in the solid. In the solid-on-liquid case, the van der Waals forces cause the solid layer to break up before the liquid film can dewet. The results presented here support the idea that the dewetting of thin liquid films might be exploited to create topographically patterned surfaces on soft polymeric solids.  相似文献   

2.
The present review is focused on most recent studies, in which the interconnections of interfacial layer and foam film properties are innate for the performance of the respective systems and have been clarified to highest possible degree. These investigations cover fundamental issues as the initial onset of premicelles in single-surfactant solutions, explore intricate topics as the interplay of competitive and cooperative adsorption in surfactant and protein–surfactant mixtures and give hints for fine-tuning the design of various formulations to be applied in industrial applications.  相似文献   

3.
The dewetting behavior of thin polystyrene (PS) film has been investigated by placing an upper plate with a ca. 140 nm gap from the underlying substrate with the spin-coated thin polymer films. Three different kinds of dewetting behaviors of thin PS film have been observed after annealing according to the relative position of the PS film to the upper plate. Since the upper plate is smaller than the underlying substrate, a part of the polymer film is not covered by the plate. In this region (I), thin PS film dewetting occurs in a conventional manner, as previously reported. While in the region covered by the upper plate (III), the PS film exhibits unusual dewetted patterns. Meanwhile, in the area right under the edge of the plate (II) (i.e., the area between region I and region III), highly ordered arrays of PS droplets are formed. Formation mechanisms of different dewetted patterns are discussed in detail. This study may offer an effective way to improve the understanding of various dewetting behaviors and facilitate the ongoing exploration of utilizing dewetting as a patterning technique.  相似文献   

4.
Three-dimensional long-wave nonlinear analysis of the instabilities engendered by van der Waals forces in a thin (<100 nm) viscous bilayer resting on a rigid substrate is presented. The bilayers are classified based on the macroscopic dewetting behavior of the films, and the three-dimensional morphological evolutions of the films are studied in each case. The dewetting of the bilayers is initiated by one of the two basic modes at the interfaces: in-phase "bending" and out-of-phase "squeezing". We show that the thicknesses, surface energies, and viscosities of the films have significant influence on the mode selection, pathway, of dewetting, and the final morphology of dewetting. Different equilibrium morphologies are obtained by tuning the nature and the strength of the intermolecular forces present at the films, which include: (i) an array of channels and ridges in the lower layer with the upper liquid embedded inside the channels, (ii) islands in the lower layer with the upper layer embedded in the interstitial spaces, and (iii) the lower layer droplets encapsulated by the upper layer.  相似文献   

5.
Various characteristics of dewetting of thin polystyrene (PS) films absorbed on highly cross-linked epoxy-coated and silicon oxide covered substrates are studied as a function of PS film thickness (20h(c1) whereas the spinodal dewetting (SD) occurs through the growth of surface undulations for hh(c2) while the SD mechanism is observed for h相似文献   

6.
Previous experimental work has shown that the spreading of a drop of aqueous anionic surfactant solution on a liquid film supported by a negatively charged solid substrate may give rise to a fingering instability (Afsar-Siddiqui, A. B.; Luckham P, F.; Matar, O. K. Langmuir 2003, 19, 703-708). However, upon deposition of a cationic surfactant on a similarly charged support, the surfactant will adsorb onto the solid-liquid interface rendering it hydrophobic. Water is then expelled from the hydrophobic regions, causing film rupture and dewetting. In this paper, experimental results are presented showing how the surfactant concentration and film thickness affect the dewetting behavior of aqueous dodecyltrimethylammonium bromide solutions. At low surfactant concentrations and large film thicknesses, the film ruptures at a point from which dewetting proceeds. At higher concentrations and smaller film thicknesses, the ruptured region is annular in shape and fluid moves away from this region. At still higher concentrations and smaller film thicknesses, the deposited surfactant forms a cap at the point of deposition that neither spreads nor retracts. This variation in dewetting mode is explained by considering the relative Marangoni and bulk diffusion time scales as well as the mode of assembly of the surfactant adsorbed on the solid surface.  相似文献   

7.
The latest results are reviewed and a number of new concepts of the thermodynamics of thin films are formulated. Current definitions of disjoining pressure and their applications for introducing disjoining pressure into thermodynamics of phase equilibria, as well as the new thermodynamic definition of the thickness of thin film, are considered. New approaches to the rigorous definition of disjoining pressure in curved films and films with nonuniform thickness, including transition zones of wetting films, are analyzed. The modulus of Gibbs’ elasticity is derived for the case of a thin film. The role of the elasticity of this type in thin films and its correlation with traditional transverse (Derjaguin) elasticity related to the disjoining pressure are explained.  相似文献   

8.
Dewetting dynamics of a liquid film composed of two superposed ultra-thin layers of immiscible liquids resting on a solid substrate is investigated in the case when surfactants are present at the liquid-liquid interface. Two cases are considered: insoluble surfactant and surfactant soluble in the lower liquid. The dependence of Hamaker constants on the surfactant concentration is taken into account. A system of three strongly nonlinear evolution equations describing large (comparable to the layer thicknesses), long-wave perturbations of the liquid-liquid and liquid-gas interfaces, as well as the surfactant concentration, is derived for each case in the lubrication approximation. The linear stability analysis shows that in the presence of surfactants, oscillatory dewetting instability can occur. Numerical simulations of this system of nonlinear evolution equations are performed. It is found that in the case of oscillatory instabilities, the system exhibits either standing or traveling "dewetting waves." The weakly nonlinear analysis explains this phenomenon.  相似文献   

9.
10.
11.
12.
13.
Birefringences of oriented aggregates of Na-montmorillonite expanded in sodium chloride solutions were measured and compared with birefringences calculated from Wiener's equation. The difference between the calculated and the observed values is nearly constant in the region of swelling values 10–20 X. It is inferred that the difference comes from the birefringence of the polymolecular water layers and that it is evidence for a specific anisotropic structure. Anisotropy is also shown in some intercalated organic polymolecular films.  相似文献   

14.
The dewetting transition of thin liquid films (approximately 100 nm) at soft viscoelastic interfaces is analyzed theoretically. It is shown that viscoelastic losses in the soft material can drastically increase the time to complete the dewetting. Thus, the influence of the thinning of the liquid film, due to the hydrodynamic drainage caused by the external applied pressure, has to be considered too. The squeezing pressure coupled with the hydrodynamic drainage may slow down the dewetting to almost zero growth rate of the dry zone; in this case a trapped rim of fluid should be observed.  相似文献   

15.
Thin polysaccharide films prepared with xyloglucan (XG), a neutral polysaccharide extracted from the seeds of Guibourtia hymenifolia were prepared by spin-coating and drop deposition under pH3, pH5 and pH12, on silicon and mica substrates. Atomic force microscopy (AFM) images show flat nanoporous matrices with additional grain-like structures on both mica and silicon for pH 3 and pH 5. However, X-ray photoelectron spectroscopy (XPS) and Auger spectra of these adsorbed biopolymers prepared under alkaline condition (pH 12) reveal that Na+ ions from the solution interact with the mica substrate surface and with XG forming chemical bonds. Both XPS and Auger results suggest XG depolymerisation during adsorption, caused by an alkaline ß-base catalyzed degradation mechanism, which is consistent with the more basic character of the mica surface under these conditions. Thus, the polysaccharide diffusion is inhibited during dewetting due to the surface bonding. On the other hand, the interaction of Na+ in solution with the silicon surface is weaker, favoring its interaction with the polysaccharide, conserving the overall polymer structure of XG and allowing the biopolymer to slip and diffuse during dewetting, forming the final branched fractal structure.  相似文献   

16.
The review addresses the influence of polyelectrolytes on the statics and dynamics of thin liquid films. Both, changes of interfacial and bulk properties, contribute to the overall behaviour of thin films formed from aqueous polyelectrolyte solutions. Therefore, the chapter is separated into two parts: polyelectrolytes at film interfaces and polymers in film bulk.  相似文献   

17.
The fluorescence properties of Rhodamine B in thin liquid films, formed from a number of anionic, cationic and non-ionic surfactant solutions, were investigated. Laser excitation was used and the emission was monitored over a period of time. Drainage profiles with light and dark fluorescence fringes were recorded with plane-polarized radiation. Change of polarization caused profound changes in the appearance of the profiles. The distribution of dye molecules between surfaces of the film and its interior was assessed and found to be related to the speed of film drainage. Expressions were established for the relation between fluorescence fringes and film thickness at different orientations of the film surface to the emission measurement direction.  相似文献   

18.
Considering a system of gaussian particles confined between two hard, parallel plates, we investigate at T = 0, ordered equilibrium configurations that the system forms as the distance D between the plates gradually increases. Using a very sensitive and reliable optimization technique that is based on ideas of genetic algorithms, we are able to identify the emerging sequences of the energetically most favorable structures. Although the resulting phase diagram is rather complex, its essential features can be reduced to the discussion of two archetypes of structural transitions: (i) a continuous transformation at a fixed number of layers, leading from a square to a centered rectangular and then to a hexagonal lattice; (ii) a discontinuous transition, transforming a hexagonal to a square lattice via complex intermediate structures, i.e., the so-called buckling transition, which is encountered as the system forms a new layer. Detailed Monte Carlo simulations are able to confirm the theoretical predictions on a semiquantitative level but are not able to grasp the tiny energetic differences between competing structures.  相似文献   

19.
We report on the dewetting of a thin film produced by the sol-gel method. In the early stages of dynamic morphological instability, the drying stress in the capillary wave model determines the linearly scaling behaviors of the characteristic wavelength with the initial film thickness and the square law dependence of the number density of the dewetted holes on the film thickness. These power law dependences are weaker than those observed in the case of the spinodal dewetting of a polymer thin film. The wavelength determined in the early stages also dominates the scaling behaviors of the average length of the sides and number density of the polygons and the diameter of the droplets of the dewetting pattern with the film thickness in the final stages of the dynamic instability. We also observed that further drying eventually induces wrinkles in the droplets, rim, and film, which have a characteristic wavelength that can be theoretically predicted.  相似文献   

20.
Summary A new analytical method is presented based on measurement of dispersion spectra (refractive index versus wavelength) of liquid samples with a fast scanning diode array spectrometer. It proves to be suitable for the analysis of nanoliter volumes where classical absorption spectroscopy fails. Future applications include sample identification and discrimination (micro-analysis) and HPLC detection.
Dispersionsspektroskopie von Flüssigkeits-Dünnschichten
Zusammenfassung Die hier vorgestellte analytische Meßmethode beruht auf der Messung der spektralen Dispersion der Probenflüssigkeit mit Hilfe eines Diodenzeilenspektrometers, das sich vor allem durch seine hohe Meßgeschwindigkeit auszeichnet. Es wird gezeigt, daß sich mit dieser Methode auch Volumina im Nanoliterbereich analysieren lassen, die der klassischen Absorptionsspektroskopie nicht mehr zugänglich sind. Die zukünftigen Anwendungen sind in der Probenidentifikation und -unterscheidung zu sehen, wie sie z. B. in der HPLC gefordert ist.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号