首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halloysite nanotubes (HNTs) filled 80/20 (wt/wt) polypropylene (PP)/acrylonitrile butadiene styrene (ABS) blends and its composites in presence and absence of dual compatibilizer (polypropylene grafted maleic anhydride (PP-g-MA), and styrene-ethylene, butylene-styrene triblock copolymer grafted with maleic anhydrite (SEBS-g-MA)) have been prepared using twin screw extruder followed by injection moulding. Significant refinements in dispersed ABS droplets diameter and interparticle distance between dispersed ABS droplets were observed in case of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence of PP-g-MA and SEBS-g-MA. This has resulted in significant enhancement in tensile and impact properties of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence of PP-g-MA and SEBS-g-MA. Refinement in morphology of dispersed ABS phase results in decrease in crystallinity of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence of PP-g-MA and SEBS-g-MA. In addition, HNTs act as heterogeneous nucleating agent for the growth of PP crystals, and hence crystallization rate of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence and absence of PP-g-MA and SEBS-g-MA increases. Thermal stability also increases in case of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence and absence of PP-g-MA and SEBS-g-MA.  相似文献   

2.
The mechanical properties, morphology, and crystallization behavior of polycarbonate (PC)/polypropylene (PP) blends, with and without compatibilizer, were studied by tensile and impact tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The tensile and impact strengths of PC/PP blends decreased with increasing the PP content due to poor compatibility between the two phases. But the addition of compatibilizer improved the mechanical properties of the PC/PP blends, and the maximum value of the mechanical properties, such as tensile and impact strengths of PC/PP (80/20 wt%) blends, were obtained when the compatibilizer was used at the amount of 4 phr. The SEM indicated that the compatibility and interfacial adhesion between PC and PP phases were enhanced. DSC results that showed the crystallization and melting peak temperatures of PP increased with the increase of the PP content, which indicated that the amorphous PC affected the crystallization behavior. However, both the PC and compatibilizer had little effect on the crystallinity of PP in PC/PP blends based on both the DSC and XRD patterns.  相似文献   

3.
《Composite Interfaces》2013,20(2-3):175-196
The morphology of blends of poly(acrylonitrile-co-butadiene-co-styrene) (ABS) and poly(ethylene terephthalate glycol) (PET-G) has been investigated with special reference to the effect of blend ratio and compatibilization. Scanning electron microscopy (SEM) examination revealed different morphologies such as dispersed, cocontinuous and phase inverted depending on the composition, which indicates that the binary blends are immiscible and form a two-phase structure. Tensile properties decreased with increase in the ABS content while the impact strength reached an optimum at ca. 70% ABS. Influence of a triblock co-polymer based on styrene and butadiene (SBS) on morphology, mechanical measurements and failure topography was used as criterion of the compatibilization effect. The compatiblizing action of SBS was evidenced by the sharp decrease in domain size of the dispersed phase followed by an increase at higher concentrations. The conformation of the compatibilizer at the interface was further analyzed based on the area occupied by the compatibilizer at the blend interface. The results were in agreement with the theoretical predictions of Noolandi and Hong. The extent of interface adhesion in these blends was analyzed by examination of the fracture-surface morphology. Addition of SBS also improved notched impact, elongation-at-break, tensile strength and modulus of elasticity. These results confirm that SBS is an effective compatibilizer for ABS/PET-G blends.  相似文献   

4.
Two types of polypropylene (PP) with different molecular structure, namely, homogeneous PP (PPH) and PP block‐copolymer (PPC), were blended with a long chain, branched, low density polyethylene (LDPE) in a twin screw extruder and then injection moulded into test specimens; the mechanical properties and morphology of the blends are reported. The tensile strength, elastic modulus, flexural strength, and flexural modulus of the blends increased monotonically with increasing PP content, although exhibiting a slightly negative deviation from the rules of mixtures due to the relatively poor compatibility of the components, which caused the blends to separate into individual phases. Comparatively, these mechanical properties of the LDPE/PPH blend were much higher than that of the LDPE/PPC blend, which was attributable mainly to the fact that the mechanical properties of neat PPH are stronger than that of neat PPC. With respect to the impact strength of the blends, a maximum value appeared in LDPE/PPH blends when PPH content was about 20% and also in LDPE/PPC blends when PPC content was about 40%.  相似文献   

5.
Two systems of polypropylene (PP), poly(lactic acid) (PLA) and ethylene vinyl alcohol copolymer (EVOH) ternary blends having different compositions were extruded in a co-rotating twin screw extruder. The first system was PP/PLA (75/25) with various EVOH contents, the second one was PP/EVOH (75/25) having various PLA contents. The effects of composition on the morphology and the tensile and impact properties of the blends were investigated. There were increases in the tensile modulus and tensile strength with an increase in the EVOH and PLA contents in the first and second systems, respectively. A molecular dynamics (MD) simulation was used to investigate the compatibility between the components. Prediction of the miscibility of the blends was carried out by determining the interaction parameters (χ), mixing energies (ΔHmix), phase diagrams and Gibbs free energies. The MD simulation showed a UCST behavior for the components. Moreover, the simulation results showed a compatibilizer effect for the EVOH component. The experimental values of the dynamic mechanical thermal analysis (DMTA) and mechanical properties were correlated to the MD results. There was a good correlation between the MD and DMTA results. The modulus values using the parallel and Davis models were near to the experimental ones. A good fitting to the mixture law with addition of EVOH confirmed a good compatibilzing effect of it between the PP and PLA components.  相似文献   

6.
Poly(trimethylene terephthalate)/polypropylene (PTT/PP) blends were prepared by melt blending. The rheology, morphology, melting, and mechanical properties of PTT/PP blends were investigated with and without the addition of polypropylene‐graft‐maleic anhydride (PP‐g‐MAH). The melt viscosity results showed that the fluid behavior of PTT/PP blends exhibited great disparity to that of PTT but similar to that of PP; the dispersed flexible PP phase in the blends served as a “ball bearing effect” under shear stress, which made the fluid resistance markedly reduced; by contrast, the relatively rigid PTT dispersed phase made only a small contribution to the viscosity. With 5 wt.% PP‐g‐MAH addition during melt processing, both the shear viscosity and the non‐Newtonian index of 70/30 PTT/PP blend were increased over that of the corresponding uncompatibilized one, whereas the shear viscosity of the 30/70 PTT/PP melt decreased slightly indicating that a considerable amount of PP‐g‐MAH did not act as compatibilizer but probably served as plasticizer.

With the increasing of the other component, the melting temperature of the PTT phase showed a slight decrease while the melting temperature of the PP phase showed a slight increase. 5 wt.% PP‐g‐MAH addition had little influence on the melting temperatures of the two components. When PP≤20 wt.%, the cold crystallization temperature of the PTT phase (Tcc (PTT‐phase)) showed little change with the composition; however, it shifted to higher temperature when PP≥30 wt.%. The variations of the Tcc (PTT‐phase), with and without PP‐g‐MAH, suggested that, when PTT was a minor component, the excess PP‐g‐MAH which did not act as compatibilizer might serve as a plasticizer that made the PTT's cold crystallization process to be easier. The SEM results indicated that, for the uncompatibilized blends, the interfaces from particles pulling‐out are clear and smooth, while, for compatibilized blends, the reactive products are at the interfaces. The mechanical properties suggested that PP‐g‐MAH did not result in significant improvement of the toughness of the blend, but the tensile strength increased markedly.  相似文献   

7.
Polypropylene (PP) /poly(trimethylene terephthalate), (PTT), binary blends in the presence of two interfacial modifier as well as two organically modified nanoclay additives were studied in terms of mechanical and morphological characteristics. Scanning electron microscopy confirmed the incompatibility of the system which was solved to some extent through incorporating the nanoclay as well as functional compatibilizers. An evaluation of the specimens via static mechanical tests in tensile mode gave credence to the assumption that the higher the PTT content, the higher the mechanical performance would be. Furthermore, the compatibilizer-containing blends not only exhibited higher toughness, but also possessed enhanced stiffness when a maleated compatibilizer was added. The tensile modulus was promoted further in the presence of clay nanoparticles; however, toughness was somewhat sacrificed. The Barentsen as well as Halpin-Tsai models were found to describe the binary blends modulus. The reinforcing impact of the nanoclay was exploited to a greater degree in the presence of the compatibilizer.  相似文献   

8.
The blends of polyamide 6/acrylonitrile-butadiene-styrene (PA6/ABS), with added styrene-maleic acid copolymer (SMA) compatibilizer, were prepared through melt mixing in an internal mixer. The effects of blend composition and various process conditions, as well as the addition of multi-wall carbon nanotubes (MWCNTs) to the blends, on the morphology and mechanical properties were investigated. The morphology of the blends and blend nanocomposites were observed by scanning electron microscopy (SEM) and analyzed using an image analysis technique. The mechanical behavior of the blends was investigated by tensile and also impact testing. The results showed that the blend composition as well as the processing conditions significantly affected the morphology and mechanical properties of the PA6/ABS blends. Among the various compositions, the blend with 36?wt.% of ABS and 4?wt.% of SMA compatibilizer exhibited the best mechanical properties. Comparing various speeds and times of mixing, it was found that less mixing speed and longer mixing times resulted in the favorable morphology and conditions for achievement of the desired toughness for the polyamide 6. By adding different amounts of MWCNTs to the blends, it was found that the presence of the carbon nanotubes changed the viscosity of the resulting nanocomposite and thus changed the morphology. These nanocomposites also showed an improvement in mechanical properties. The MWCNTs acted as a second compatibilizer, resulting in a synergistic effect on the mechanical properties of the PA6/ABS blend nanocomposites.  相似文献   

9.
Recycled poly(ethylene terephthalate) (R-PET) and virgin polyamide 6 (PA6) blends compatibilized with glycidyl methacrylate grafted poly(ethylene-octene) (POE-g-GMA) were melt blended. The morphological, rheological and mechanical properties of the prepared blends were investigated by scanning electron microscopy, rheology, and an electromechanical testing instrument, respectively. All of the blends showed a droplet dispersion type morphology, and the PA6 particle size decreased with increase in the POE-g-GMA concentration. The storage modulus (G′), loss modulus (G′′), and complex viscosity (η*) of the blends significantly increased at low frequency with the addition of POE-g-GMA. In addition, ‘‘Cole-Cole’’ plots showed that the elasticity of the blends was also increased by raising the compatibilizer dosage. It was also found that 10 wt% of POE-g-GMA caused 88.46 and 171.05% increments in Charpy impact strength and elongation at break with only a 21.66% decrement in tensile strength.  相似文献   

10.
Mechanical properties and morphology of blends of polypropylene (PP) with high molecular weight polyethylene (HMWPE) prepared by coprecipitation from xylene solution are investigated. Compared to blends of PP with commercial high-density polyethylene (HDPE), the mechanical properties of the blends of PP/HMWPE are much superior to those of PP/HDPE blends. Not only is the tensile strength stronger, but also the elongation at break is much higher than that of the PP/HDPE blends of the same composition. These differences increase with increasing HMWPE and HDPE content. Scanning electron microscopy of the fracture surface resulting from the tensile tests shows that the compatibility in PP/ HMWPE blends is much better than that in PP/HDPE blends. This is most likely attributable to the enhanced chain entanglement of HMWPE with the PP in the amorphous phase due to the lower crystallinity, owing to the high molecular weight of the HMWPE, and a much more flexible chain. The thermal behavior and spherulite morphology of both blends are also investigated.  相似文献   

11.
Nylon 6/poly(acrylonitrile‐butadiene‐styrene)(ABS) blends were prepared in the molten state by a twin‐screw extruder. Maleic anhydride‐grafted polypropylene (MAP) and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these blends. The effects of compatibilizer addition to the blends were studied via tensile, torque, impact properties and morphology tests. The results showed that the additions of epoxy and MA copolymer to nylon 6/ABS blends enhanced the compatibility between nylon 6 and ABS, and this lead to improvement of mechanical properties of their blends and in a size decrease of the ABS domains.  相似文献   

12.
The effect of the disperse phase and the diffuse interface between phases on the tensile and impact strengths of polypropylene (PP)/poly(ethylene terephthalate) (PET) (75/20 by weight) blends compatibilized with maleic anhydride–grafted PP derivatives and on the tensile modulus of poly(vinyl chloride)/polystyrene (PVC/PS) nanoparticle blends compatibilized with polystyrene/poly(vinyl acetate) (PS/PVAc) block copolymers were investigated experimentally. The weight fraction of the diffuse interface between the PP and PET phases in the PP/PET blends was determined by modulated differential scanning calorimetry (MDSC). A correlation between the diffuse interface content and mechanical properties was found. With increasing diffuse interface weight fraction, the impact and tensile strengths of the PP/PET blends increased. There is a brittle-tough type transition in these PP/PET blends. With increasing diffuse interface content in the PVC/PS nanoparticle blends in which the particle size was fixed at about 100 nm, the tensile modulus also clearly increased.  相似文献   

13.
A range of blends based on 70 wt% of poly(trimethylene terephthalate) PTT with 30 wt% dispersed phase were produced via melt blending. The dispersed phase composition was varied from pure maleic anhydride grafted poly(ethylene-octene) (POE-g-MA) over a range of POE-g-MA:polypropylene (PP) ratios. The micromorphology and mechanical properties of the ternary blends were investigated. The results indicated that the domains of the POE-g-MA are dispersed in the PTT matrix, and at the same time the POE-g-MA encapsulate the PP domains. The interfacial reaction between the hydroxyl-end group of PTT and maleic anhydride (MA) during melt blending changes the formation from “isolated formation” to “capsule formation,” where the PP domains are encapsulated by POE-g-MA. Compared to the PTT/POE-g-MA blends, mechanical properties of ternary blends, such as tensile strength and Young's modulus, were improved significantly.  相似文献   

14.
A multiblock copolymer of polyethersulfone (PES) and polycarbonate (PC) was used as a compatibilizer for a blend of PES/PC. The morphology, thermal properties, mechanical properties, etc. of the resulting ternary blend systems were investigated. The addition of the compatibizer improved the compatibility between PES and PC. It was found that the interfacial adhesion was enhanced; the size of the dispersed phase was reduced and this resulted in an improvement of elongation at break and tenacity of PES/PC blends and tensile strength and tensile modulus were almost constant.  相似文献   

15.
《Composite Interfaces》2013,20(2-3):251-262
The effect of compatibilizers, namely, maleic anhydride grafted polypropylene (MAPP GR-205) and trimethylolpropane triacrylate (TMPTA), on the mechanical and morphological properties of the PP-cellulose (derived from oil palm empty fruit bunch fiber) and PP-oil palm empty fruit bunch fiber (EFBF) biocomposites has been studied. The ratio of PP : cellulose and PP : EFBF is fixed to 70 : 30 (wt/wt%) while the concentration of the compatibilizer is varied from 2.0 to 7.0 wt%. Results reveal that at 2.0 wt% of MAPP concentration, tensile strength of PP-EFBF biocomposite is significantly improved. This is due to the enhanced EFBF matrix adhesion resulting in an improvement in EFBF biocomposite performance. There are no significant changes observed in the PP-cellulose biocomposite properties upon the addition of MAPP. In contrast to the tensile strength, flexural modulus and impact strength are significantly improved with the addition of 2.0 wt% TMPTA to PP-cellulose biocomposite. The enhancement of mechanical properties in the presence of TMPTA is believed to be attributed to crosslinking of multifunctional monomer with the hydroxyl groups of cellulose.  相似文献   

16.
Two polypropylene (PP)/polylactide (PLA)/clay ternary nanocomposite systems, i.e. PP-rich and PLA-rich ones, each containing various amounts of one of two types of clay, were prepared by one step melt compounding in a twin screw extruder. The microstructures of the developed systems were correlated with tensile and impact properties. A theoretical calculation using wetting coefficients was used for predicting the clay nanoparticles localization in the blends. The nanoparticles were almost completely located within the PLA phase in both the PP-rich and PLA-rich systems, in good agreement with the predictions. Addition of a compatibilizer led to localization of the nanoparticles at the interfaces of the blends. From the wide angle X-ray scattering (WAXS) spectra it was concluded that the incorporation of clay led to intercalated structures in the both systems. The increase in impact toughness of the compatibilized blend nanocomposites, with respect to the uncompatibilized ones, was attributed to the weakened interfacial debonding in the presence of the interfacial-localized nanoparticles.  相似文献   

17.
Highly oriented self-reinforced 80/20 blends of polylactide (PLA)/thermoplastic polyurethane elastomer (TPU) were successfully fabricated through solid hot stretching technology. Different from the isotropic sample, stress rose rapidly in a low strain region, and exhibited strain hardening for the drawn samples of the PLA/TPU blend. Superior mechanical properties of the blend, with the notched Charpy impact strength 150 KJ/m2, and tensile strength 197 MPa, were achieved. With increasing hot stretch ratio, the storage modulus increased, the glass transition temperatures of the PLA-rich phase and TPU-rich phase in the blends moved to higher temperatures, and the melting temperature and crystallinity of the blend increased, indicating the stress-induced crystallization of the blend during drawing. The longitudinal fracture surfaces of the blends at different stretch ratios exhibited orderly arranged fibrillar bundle structure, which contributed to the significantly higher strength and toughness of the blend.  相似文献   

18.
Acrylonitrile-butadiene-styrene (ABS)/polyamide 6 (PA6) blends containing various amounts of organomontmorillonite (OMMT) were prepared using a twin-screw extruder followed by injection molding. The effect of OMMT on the microstructure and properties of the ternary nanocomposites is investigated by wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and mechanical properties testing. The results showed the OMMT platelets were preferentially located and exfoliated in the PA6 phase, but some were located at the interface of the ABS and PA6 phase. The effect of the addition of the OMMT on the morphology and mechanical properties was also evaluated. SEM revealed that the dimensions of the dispersed PA6 droplets were greatly reduced when the concentration of the OMMT was less than 4 phr. The domain size was less than the neat ABS/PA6 blends with the increasing of the OMMT content. It was suggested that the OMMT can compatibilize the ABS/PA6 blend. In addition, the flexural strength and modulus increased with increasing OMMT content, but the tensile strength became maximal at 3 phr OMMT. The OMMT had a negligible effect on the impact strength of the ABS/PA6 blend nanocomposite.  相似文献   

19.
Poly(vinyl chloride)(PVC)/halloysite nanotubes (HNTs) nanocomposites were prepared by melt blending. The effects of HNT content on the mechanical properties, morphology, and rheological properties of the nanocomposites were investigated. The results showed that HNTs were effective in toughening and reinforcing PVC nanocomposites. The notched impact, tensile and flexural strength, and flexural modulus of the nanocomposites were remarkably increased compared with those for the pure PVC. Scanning electron microscopy (SEM) results illustrated the ductile behavior of the nanocomposites, with a possible cavitation mechanism. Transmission electron microscopy (TEM) results showed that HNTs were uniformly dispersed in the PVC matrix. Interfacial interaction of hydrogen bonding between the HNTs and PVC matrix was substantiated. The plasticization times of PVC/HNTs nanocomposites were found to be shorter and the equilibrium torque was higher than that for the pure PVC.  相似文献   

20.
Phase structures of immiscible polypropylene (PP)/polystyrene (PS) blends with different volume proportions, PP90/PS10, PP80/PS20, PP70/PS30, PP60/PS40, PP50/PS50, PP40/PS60, PP30/PS70, PP20/PS80, PP10/PS90, were observed by means of scanning electronic microscopy (SEM). The zero shear viscosities of the blends were determined according to a modified Carreau model by fitting the curves of static shear rate sweeps of blends tested at 190°C in a Stress Tech Fluids Rheometer. The results showed that the compositional dependence of zero shear viscosity of PP/PS deviated greatly from linear or log‐linear additivity. When PS was dispersed in a PP continuous phase, the blends showed negative deviation, while for blends with PP dispersed in a PS matrix, positive deviation was generated. When different theoretical equations of Nielsen, Utracki, Taylor, Frankel‐Acrivos (FA), Choi‐Schowalter (CS), and Han‐King (HK) were used to fit the experimental data of zero shear viscosities of blends, none of them was suitable for PP/PS blends. These experimental phenomena may result from the complex phase structures of the blends and their response to shear conditions, which are discussed in detail and compared with the experimental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号