首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
3D打印制备陶瓷可以实现结构-材料设计一体化,为复杂形状陶瓷材料快速成型提供了新途径。但是传统的3D打印制备陶瓷是以陶瓷粉末或陶瓷颗粒为打印材料,存在陶瓷构件尺寸精度差、表面光洁度低和力学性能不佳等问题。近年来,以聚合物前驱体为打印材料,通过3D打印成型、高温裂解等工艺制备高性能陶瓷技术的出现为改善这些不足提供了新方法,成为3D打印陶瓷领域的研究热点。本文概述了聚合物前驱体3D打印制备高性能陶瓷的研究进展,重点阐述了本体聚合物前驱体、聚合物前驱体/光敏化合物、聚合物前驱体/巯基化合物、光敏基团改性聚合物前驱体、增强体/聚合物前驱体五种典型材料体系的研究现状,并对其今后的发展方向进行了展望。  相似文献   

3.
利用3D打印工艺制备芝麻秸秆粉(SSP)/聚乳酸(PLA)、水稻秸秆粉(RSP)/聚乳酸两种复合材料,对比研究了两种材料的密度、力学性能及耐水热老化性能。结果表明,复合材料的密度、拉伸强度和弯曲强度均低于纯PLA,但RSP/PLA复合材料的拉伸强度和弯曲强度均高于SSP/PLA复合材料。水热老化实验表明,3D打印成型的两种复合材料在吸水初期均快速吸水,且吸水率高,4h后基本达到吸水平衡;SSP/PLA的吸水率整体明显高于RSP/PLA的吸水率,对于SSP/PLA来说,9%比例的材料吸水率最大,最高可达36.3%左右。水热老化后,样条表面出现凹陷,颜色变白。  相似文献   

4.
高分子材料3D打印加工可制备传统加工不能制备的形状复杂的高分子制件,是近年来发展很快的先进制造技术。但适用于3D打印加工的高分子材料种类少,结构功能单一,难以制备高分子功能器件。本文介绍了我们在聚合物基微纳米功能复合材料3D打印加工方面的研究工作:通过有机/无机杂化、固相剪切碾磨、超声辐照、分子复合等技术制备适合于选择性激光烧结(SLS)和熔融沉积成型(FDM)的聚合物基微纳米功能复合材料;实现了聚合物基微纳米功能复合粉体的SLS加工和功能复合丝条的FDM加工;研究了3D打印低维构建、层层叠加、自由界面成型、复杂固-液-固转变过程;建立了功能复合粉体球形化技术,发明了直接熔融挤出新型FDM打印机;制备了常规加工方法不能制备的数种形状复杂的功能器件,如尼龙11/钛酸钡压电器件、柔性聚氨酯/碳纳米管传感器、个性化人颌骨模型等,突破了传统加工难以制备复杂形状制品和目前3D打印难以制备功能制品的局限。  相似文献   

5.
光固化3D打印是最早出现的3D打印技术,经过30多年的发展,先后发展出液态树脂固化或光固化(stereolithography,SLA)、数字光处理(digital light processing,DLP)、液晶显示(liquid crystal display,LCD)、连续无分层液体界面提取技术(layerless continuous liquid interface production,CLIP)、双光子3D打印(two-photon polymerization,TPP)、全息3D打印技术等多种打印技术。光固化3D打印技术具有精度高、成型速度快等特点,因此在许多领域都有良好的应用,且前景广阔。在众多领域中,齿科领域个性化特征明显,对打印材料精度要求高,是目前光固化3D打印最有应用潜力和高附加值的领域。本文综述了光固化3D打印技术的种类、原理和技术的优缺点,并简述了光固化3D打印在齿科领域的应用。  相似文献   

6.
聚酰亚胺(PI)是一种综合性能优异的特种工程塑料,已经被广泛应用于航天航空、汽车制造、微电子等重要技术领域;因其难溶难熔特性,PI加工成形尤其是复杂结构件的制造严重受限。然而,3D打印技术(也称“增材制造”)是一种以数字模型文件为基础,通过逐层打印的方式来构造复杂物体的技术,具有控形控性的特点,为PI智能制造的发展和应用提供新的技术路径。因此,本文就近年来国内外针对PI的3D打印研究现状,综述PI材料3D打印制造的研究进展和发展趋势,重点介绍了熔融成型3D打印热塑性PI和热固性PI、光固化3D打印PI及直写挤出3D打印PI的研究进展。  相似文献   

7.
3D打印技术作为第三次工业革命的代表性技术之一,越来越受到工业界和投资界的关注。而3D打印成本高,不仅仅是自身的机器价格高,更重要的是打印材料价格昂贵。3D打印材料是影响3D打印技术发展与应用的关键因素。综述了近年来3D打印复合材料的研究发展以及技术创新应用,重点讨论了3D打印多功能纳米复合材料、纤维增强复合材料、无机填料复合材料、金属填料复合材料和高分子合金的性能及应用。同时对3D打印复合材料的开发及应用前景进行了分析和展望。  相似文献   

8.
3D打印(亦称增材制造)技术因其独特的材料成型优势,在组织工程、航空航天、汽车制造、以及电子工业等众多领域显示出巨大的应用潜力。然而,在实际生物医学应用中,3D打印生物器件和组织器官除了要求具有复杂的结构和优异的生物学性能外,其打印结构的表面性质也需满足某些特定的要求,如3D打印组织骨架和器官必须具有生物相容性、抗菌性及细胞粘附性等。因此,将3D打印与传统表面修饰技术相结合,在不改变材料三维结构的基础上调控其表面生物化学性质,从而赋予3D打印生物骨架器官多功能化,可实现更为广泛的应用。本文以3D打印生物骨架及器官的表面修饰为主要内容对就近年来3D打印生物医用材料的最新研究进展进行了综述。  相似文献   

9.
3D打印技术亦称为增材制造,是基于三维数学模型数据,通过连续的物理层叠加,逐层增加材料来生成三维实体的技术。作为第三次工业革命的代表性技术之一,3D打印材料是影响3D打印技术发展与应用的关健因素。而高分子聚合物在打印材料中占据主要地位,其中高分子复合材料具有明显优势。本文综述了近年来3D打印用高分子材料及其复合材料的研究现状,包括高分子丝材、光敏树脂、高分子粉末、高分子凝胶及其它高分子材料,并对高分子材料在3D打印领域的发展进行了展望。  相似文献   

10.
张彪  刘福康  毛志杰  徐溢 《大学化学》2023,38(5):163-171
光固化3D打印技术作为目前较为成熟的一类增材制造技术,在打印成型过程中包括三维建模、光敏树脂制备、打印参数调控、后处理等步骤,内容涉及机械、光学、高分子化学、软件工程学等相关知识。为提升本科生的实验兴趣和实验技能,进一步培养其科研和创新意识,我们面向本科生设计了基于光固化3D打印技术的创新实验。实验采用基于光引发自由基聚合的数字光处理(DLP)3D打印技术,通过对打印过程全流程的参与实践,达到让学生了解3D打印的原理、打印材料的合成和打印技术的过程等相关知识,从而达到可以自主操作完成光固化3D打印的实验教学目的。最后,通过对实验结果的分析,进一步培养学生分析问题和解决问题的能力。  相似文献   

11.
The rapid development of additive manufacturing techniques, also known as three-dimensional (3D) printing, is driving innovations in polymer chemistry, materials science, and engineering. Among current 3D printing techniques, direct ink writing (DIW) employs viscoelastic materials as inks, which are capable of constructing sophisticated 3D architectures at ambient conditions. In this perspective, polymer designs that meet the rheological requirements for direct ink writing are outlined and successful examples are summarized, which include the development of polymer micelles, co-assembled hydrogels, supramolecularly cross-linked systems, polymer liquids with microcrystalline domains, and hydrogels with dynamic covalent cross-links. Furthermore, advanced polymer designs that reinforce the mechanical properties of these 3D printing materials, as well as the integration of functional moieties to these materials are discussed to inspire new polymer designs for direct ink writing and broadly 3D printing.  相似文献   

12.
Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water‐in‐oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer‐by‐layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure‐on‐dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques.

  相似文献   


13.
海藻酸钠优良的生物相容性和生物可降解性赋予其在生物医药领域广阔的应用前景,如何实现利用海藻酸钠制造生物医用材料、组织、器官成为推动其优良性能在生物医学上应用的重要挑战之一.3D打印技术拥有对结构的可控设计和材料的高利用率的优点,在生物材料的个性化定制加工方面具有独特的优势.本文介绍了海藻酸钠的性质特点,并综述了3D打印...  相似文献   

14.
3D打印光敏树脂的研究进展   总被引:1,自引:0,他引:1  
以光敏树脂为原料的立体快速成形3D打印技术,具有成本低、精度高、成型快等优点,在各个领域得到广泛的应用。但是,与之相适应的光敏树脂价格较高,并被国外的一些大公司所垄断,而国内相关研发起步较晚,能够生产和研发性能优良的3D打印光敏树脂的企业较少。简要阐述了3D打印光敏树脂的成形方式、固化原理和组成,重点讨论了配方设计的基本方法和评价指标,并对该领域进行了展望。  相似文献   

15.
古孝雪  于晶  杨明英  帅亚俊 《化学进展》2022,34(6):1359-1368
增材制造,也称为三维(3D)打印,正推动制造、工程、医学等领域的全面创新升级。3D打印技术由于能够个性化定制生物的复杂3D微结构,构建仿生的功能化活组织或人工器官,近十年来在生物医学领域中取得了长足的发展。丝素蛋白(SF)是一种来源丰富、生物可降解、力学性能优良、细胞相容性极佳的天然有机高分子,为3D打印墨水的设计提供了一种有前景的选择。然而,作为结构蛋白,单一组分的SF具有的生理功能有限,且其经过打印后的稳定性较差,限制了SF在3D打印以及生物医药领域中的进一步发展。为此,研究人员通过化学改性技术和先进3D打印技术相结合,使得改性后的SF能够更适用于3D打印,并发展成为一种具有应用价值的生物材料。本文综述了SF的结构特征、SF的化学修饰策略、打印墨水的制备策略以及3D打印SF材料在生物医学领域的最新应用进展,并展望了3D打印SF生物材料的未来发展趋势,为其在更广阔领域的应用提供一定的借鉴。  相似文献   

16.
The application of chitosan (CS) and whey protein (WP) alone or in combination in 3D/4D printing has been well considered in previous studies. Although several excellent reviews on additive manufacturing discussed the properties and biomedical applications of CS and WP, there is a lack of a systemic review about CS and WP bio-inks for 3D/4D printing applications. Easily modified bio-ink with optimal printability is a key for additive manufacturing. CS, WP, and WP–CS complex hydrogel possess great potential in making bio-ink that can be broadly used for future 3D/4D printing, because CS is a functional polysaccharide with good biodegradability, biocompatibility, non-immunogenicity, and non-carcinogenicity, while CS–WP complex hydrogel has better printability and drug-delivery effectivity than WP hydrogel. The review summarizes the current advances of bio-ink preparation employing CS and/or WP to satisfy the requirements of 3D/4D printing and post-treatment of materials. The applications of CS/WP bio-ink mainly focus on 3D food printing with a few applications in cosmetics. The review also highlights the trends of CS/WP bio-inks as potential candidates in 4D printing. Some promising strategies for developing novel bio-inks based on CS and/or WP are introduced, aiming to provide new insights into the value-added development and commercial CS and WP utilization.  相似文献   

17.
18.
Additive manufacturing or 3D printing is the advanced method of manufacturing monolithic adsorbent materials. Unlike beads or pellets, 3D monolithic adsorbents possess the advantages of widespread structural varieties, low heat and mass transfer resistance, and low channeling of fluids. Despite a large volume of research on 3D printing of adsorbents having been reported, such studies on porous carbons are highly limited. In this work, we have reported direct ink 3D printing of porous carbon; the ink consisted of commercial activated carbon, a gel of poly(4-vinylphenol) and Pluronic F127 as plasticizer, and bentonite as the binder. The 3D printing was performed in a commercial 3D printer that has been extensively modified in the lab. Upon 3D printing and carbonization, the resultant 3D printed porous carbon demonstrated a stable structure with a BET area of 400 m2/g and a total pore volume of 0.27 cm3/g. The isotherms of six pure-component gases, CO2, CH4, C2H6, N2, CO, and H2, were measured on this carbon monolith at 298 K and pressure up to 1 bar. The selectivity of four gas pairs, C2H6/CH4, CH4/N2, CO/H2, and CO2/N2, was calculated by Ideally Adsorbed Solution Theory (IAST) and reported. Ten continuous cycles of adsorption and desorption of CO2 on this carbon confirmed no loss of working capacity of the adsorbent.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号