首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用熔融/固相缩聚法合成了聚乙醇酸(PGA)可降解高分子材料,其基本反应步骤为:以乙醇酸为原料,先在190℃熔融状态下将乙醇酸脱水制成分子量为2万左右的低聚物,然后将制得的低聚物在190℃下进行固相缩聚以进一步提高分子量,所制备的PGA产物通过IR、DSC、XRD等手段进行表征。重点考察了不同催化剂,催化剂用量、是否熔融、反应温度、反应时间等因素对固相缩聚的影响,并得出熔融/固相缩聚法合成高分子量的聚乙醇酸的较佳工艺条件:反应温度190℃,二水合醋酸锌与等摩尔量的对甲苯磺酸作为催化剂(质量分数为0.4%),熔融缩聚2h后制得低聚物,然后在190℃下进行固相缩聚,40h后熔融一次,产品粉碎后继续固相缩聚60小时,PGA的重均分子量可达74000左右。  相似文献   

2.
以生物基单体2,5-呋喃二甲酸、乙二醇为原料合成聚2,5-呋喃二甲酸乙二醇酯(PEF)。采用熔融酯交换法以PEF聚酯部分取代聚对苯二甲酸乙二醇酯(PET),制备了系列PET-b-PEF嵌段共聚酯。通过核磁共振仪(NMR)、差示扫描量热仪(DSC)、热失重仪(TGA)、X射线衍射仪(XRD)等技术手段表征了共聚酯的结构和性能。结果表明,该系列共聚酯的玻璃化转变温度(Tg)在75.8~80.3℃之间,且随着PEF链段质量分数的增加,PET-b-PEF嵌段共聚酯的Tg先降低后升高,结晶度和熔融温度逐渐降低。当PEF链段含量高于15%时,共聚酯没有结晶峰。该系列共聚酯具有良好的热稳定性,起始分解温度在392.2~407.9℃之间,与所制备的PET起始分解温度403.3℃接近。且当共聚酯中PEF链段含量低于15%时,起始分解温度均在407℃左右,优于PET的热稳定性。  相似文献   

3.
聚(丁二酸丁二酯-co-丁二酸丙二酯)的等温结晶行为研究   总被引:1,自引:0,他引:1  
以1,4-丁二酸、1,4-丁二醇和1,3-丙二醇为原料通过直接熔融缩聚法合成了聚丁二酸丁二酯(PBS),聚丁二酸丙二酯(PPS)和聚(丁二酸丁二酯-co-丁二酸丙二酯)(PBSPS)等脂肪族聚酯.利用1H-NMR,WAXD,DSC和POM等研究了聚酯的结晶结构和结晶动力学过程等结晶行为.PBSPS的结晶晶型与PBS一致,说明只有丁二酸丁二酯(BS)单元结晶而丁二酸丙二酯(PS)单元处于无定形区.聚酯等温结晶后,在升温熔融过程中出现了多重熔融峰.分析表明多重熔融峰主要来自于聚酯升温过程中的熔融-重结晶行为.利用Avrami方程分析了聚酯的等温结晶动力学,Avrami指数n为2.2~2.8,说明聚酯等温结晶时主要以异相成核的三维生长方式进行;随着PS单元的增多,聚酯的表观结晶活化能升高,也就是说BS单元的结晶变得困难.POM观察到聚酯等温结晶时都出现了环带球晶现象,球晶形态会随着结晶温度和化学结构差异而改变.  相似文献   

4.
直接酯化法合成聚2,5-呋喃二甲酸乙二酯   总被引:4,自引:3,他引:1  
刘茜  姜敏  周光远  张强  叶冲  敖玉辉 《应用化学》2012,29(7):751-756
以2,5-呋喃二甲酸(FDCA)和乙二醇(EG)为原料,草酸亚锡为催化剂,采用直接酯化法制备了聚2,5-呋喃二甲酸乙二酯(PEF)。考察了酯化反应、酯化产物、缩聚反应及缩聚产物的影响因素,结果表明,草酸亚锡在该体系中既可催化酯化反应又可催化缩聚反应,当n(FDCA)∶n(EG)=1∶1.6、草酸亚锡摩尔分数为0.1%、酯化温度为210℃、缩聚温度为240℃、缩聚反应时间为480 min、磷酸三甲酯摩尔分数为0.03%时,酯化程度最高(酯化产物的酸值在94%以上),缩聚产物相对分子量最高(比浓粘度达到1.29 dL/g),端羧基含量最低(34.3 mol/t);采用FTIR和1H NMR对目标产物的结构进行了表征。  相似文献   

5.
固相缩聚PET等温结晶动力学   总被引:3,自引:1,他引:3  
高聚物等温结晶动力学方面的研究者甚多,由熔融缩聚制备的不同分子量PET的等温结晶动力学及几种不同缩聚催化体系固相缩聚PET的等温结晶动力学已有报道.本文采用一个修正的Avrami方程对固相缩聚PET样品进行系统的等温结晶动力学研究.  相似文献   

6.
以二硫代二乙酸(DTDGA)与乙二醇(EG)单体为原料,对甲苯磺酸(PTSA)为催化剂,采用熔融缩聚法合成了聚二硫代二乙酸乙二醇酯,成功地将二硫键引入到聚酯中,研究了反应温度及反应时间对分子量的影响,并用凝胶渗透色谱(GPC)、热失重(TG)、核磁共振(1 H-NMR)分析方法对产物进行表征。  相似文献   

7.
聚羟基脂肪酸酯是一种新型合成的脂肪族聚酯,同聚乳酸相似,具有优异的生物相容性能、生物可降解性和优良的力学机械性能,可作为生物医用材料和生物可降解包装材料,是最具前景的环境友好型聚合材料之一。目前合成聚乳酸和聚羟基脂肪酸酯的化学方法主要有开环聚合法、直接缩聚法以及自身酯交换聚合法,不过后者研究得较少。本文对这3种方法的研究进展进行了叙述,重点讨论了开环聚合法和直接缩聚法,尤其对开环聚合中的配位插入聚合的新进展进行了较详细的论述。  相似文献   

8.
监测了对-乙酰氧基苯甲酸与聚对苯二甲酸乙二醇酯(PET)共缩聚反应过程中1HNMR图谱及特性粘度的变化,对乙酰氧基酯交换反应及乙酰脂肪酯的反应活性进行了研究。并研究了以低分子量PET或对苯二甲酸二乙二醇酯为原料时反应中醚键的形成及其进入共聚酯链的规律性。  相似文献   

9.
AB_3型超支化聚(酰胺-酯)的合成及缩聚动力学研究   总被引:6,自引:0,他引:6  
采用丁二酸酐、三羟甲基氨基甲烷为主要原料 ,在冰水浴条件下 ,合成AB3型单体 ,然后进行熔融缩聚制得超支化聚 (酰胺 酯 ) ,没有出现凝胶现象 .采用Fourier变换红外谱仪 (FTIR)、粘度测试、端基分析等方法对其结构、特性粘数进行了表征 .同时对AB3型超支化聚 (酰胺 酯 )的缩聚反应动力学进行了研究 ,得出了130℃、14 0℃和 15 0℃时的缩聚反应速率常数 ,并进一步得出了缩聚反应活化能 .实验结果证明缩聚过程为自催化过程 ,且为三级反应  相似文献   

10.
通过直接熔融缩聚法合成了一系列聚十二烷二元酸酯,用GPC、^1H—NMR、FTIR对产物进行了表征,并讨论了预聚酯合成时催化剂浓度和种类、预聚反应温度、预聚初始醇酸摩尔比对聚合反应的影响。结果表明,在所选的三个催化剂体系中,氮化亚锡二水合物与对甲苯磺酸复合催化剂的催化效果最好;最佳反应条件:n对甲苯横酯/n二元酸=0.0021~0.0032,反应温度为160~180℃,醇酸摩尔比范围为1.05—1.10。  相似文献   

11.
研究了稀土催化体系对聚对苯二甲酸乙二酯固相缩聚反应的催化效果及对所得高分子量聚酯切片性能的影响,发现稀土催化体系可明显提高聚酯固相缩聚的反应速率,稀土催化体系对聚酯固相缩聚反应的催化活性明显高于传统催化体系,其中单一稀土催化体系与混合稀土催化体系在较低温度下具有相近的催化活性,而在较高温度下单一稀土催化体系的催化活性较高;加入稳定剂,不影响稀土催化的固相缩聚反应速率,稀土催化固相缩聚得到的PET样品具有较高的结晶度和较大的晶粒尺寸,其中单一稀土催化所得样品的晶粒尺寸最大,相应地,单一稀土催化的固相缩聚反应活化能也最大;稀土催化体系催化聚酯固相缩聚反应时添加适当稳定剂,可获得与采用传统催化体系得到的PET切片相近的热稳定性。  相似文献   

12.
监测了对-乙酰氧基苯甲酸与聚对苯二甲酸乙二醇酯(PET)共缩聚反应过程中HNMR图谱及特性粘度的变化,对乙酰氧基酯交换反应及乙酰脂肪酯的反应活性进行了研究,并研究了以低分子量PET或对苯二甲酸二乙二醇酯为原料时反应中醚键的形成及其进入共聚酯链的规律性。  相似文献   

13.
草酸亚锡: 合成聚对苯二甲酸丙二醇酯的新催化剂   总被引:1,自引:0,他引:1  
系统研究了草酸亚锡在酯化法合成聚对苯二甲酸丙二醇酯(PTT)中的催化活性, 并与钛酸四丁酯、二丁基氧化锡和辛酸亚锡催化剂进行了比较. 在酯化过程中, 以生成的水量表征催化剂的活性, 在缩聚过程中, 则用产品的特性黏度(IV)和端羧基含量(CTCG)来表征. 草酸亚锡具有螯合状的分子结构, 表现出更高的催化活性, 反应时间缩短, PTT聚酯的性能得到改善.  相似文献   

14.
以L-乳酸单体为原料,采用复合催化剂通过直接熔融法合成低聚左旋聚乳酸(PLLA),然后分段控温进行固相缩聚(SSP).对固相缩聚的工艺条件进行了详细的研究.采用粘度法和凝胶渗透色谱法(GPC)对固相缩聚产物PLLA的特性粘数([η])和分子量进行了表征.用差示扫描量热(DSC)研究了固相缩聚产物的熔融行为和结晶度.结果...  相似文献   

15.
固相缩聚法制备高粘度尼龙1111   总被引:1,自引:0,他引:1  
采用固相缩聚工艺提高尼龙1111的相对粘度,是制备高粘度尼龙1111的有效方法之一。固相后缩聚法制备相对粘度高于2.5的高粘度尼龙1111,宜选择初始相对粘度为2.0的尼龙1111,反应时间12h,反应温度175℃。增粘后的尼龙1111具有更为优良的物理机械性能。  相似文献   

16.
以对苯二甲酸、2,5-呋喃二甲酸(FDCA)和乙二醇为原料,钛酸四丁酯为催化剂,采用直接酯化法,通过改变对苯二甲酸与2,5-呋喃二甲酸摩尔比合成了一系列高分子量线性聚对苯二甲酸-2,5-呋喃二甲酸乙二醇无规共聚酯(PEFT).运用1H-NMR和13C-NMR表征并确立了共聚酯的结构,XRD结果显示该系列共聚酯在原生态状态下均为无定形聚集态结构,DSC结果表明该系列共聚酯只有一个玻璃化转变温度(73.3~84.2℃),介于PET和PEF之间,随着PEF含量的增加而增大.TGA结果显示该系列聚酯具有良好的热稳定性,起始热分解温度高于390℃,介于PET和PEF之间.拉伸测试结果表明共聚酯的组成对其力学性能有影响,其中PEFT-10,PEFT-70和PEFT-90的力学性能较好,优于PET.  相似文献   

17.
原位缩聚法制备了一系列(对羟基苯甲酸-对苯二甲酸-间苯二酚)(HB-TA-RES)热致液晶共聚酯与聚对苯二甲酸丁二酯-聚四亚甲基醚热塑弹性体(PBT-PTMG)复合物,并用POM,TGA,WAXD,SEM及动态应力流变仪等手段进行了表征.复合物在较宽的共聚酯含量范围(30 wt%~70 wt%)或共聚酯组成不同时(共聚酯中HB含量20 mol%~80 mol%)均具有热致液晶行为.当复合物中共聚酯含量≤50 wt%以及共聚酯中对羟基苯甲酸(HB)含量≤60 mol%时,共聚酯分子的结构更加均匀化,结晶组分的结晶行为受到限制,基体与液晶组分具有较好的复合效果,不表现明显的相分离行为.复合物与相应的纯共聚酯相比,具有较好的热稳定性;其粘度均比基体PBT-PTMG小.当复合物中共聚酯含量≥30 wt%时,其粘度下降尤为显著,表明其具有较好的加工性.  相似文献   

18.
本文以草酸和玉米淀粉为原料,通过改变原料的摩尔比反应制备了不同取代度(0.1到0.9)的草酸淀粉酯,采用滴定法测定产物的取代度,利用红外光谱和核磁共振表征产物(取代度为0.41)的化学结构,产物中含有羰基的结果表明成功制备了草酸淀粉酯.详细考察了草酸淀粉酯的物理化学性质,利用粘度测定、热重分析、广角X衍射(WXRD)以及湿度吸收等研究不同取代度的草酸淀粉酯的分子量、热稳定性,结晶形态以及吸水性能.结果说明,与玉米淀粉相比,草酸淀粉酯的吸水率随着取代度的提高而增加,其分子量、热稳定性以及结晶性能则呈下降趋势.  相似文献   

19.
聚2,5-呋喃二甲酸乙二醇酯的合成与表征   总被引:1,自引:0,他引:1  
以2,5-呋喃二甲酸和乙二醇为原料,草酸亚锡为催化剂,通过直接酯化法合成了线性高分子量聚2,5-呋喃二甲酸乙二醇酯(PEF).运用红外光谱(FTIR)和核磁共振氢谱(1H-NMR)表征了该聚酯的结构;由乌氏黏度计法和凝胶渗透色谱(GPC)建立了该聚酯在一种混合溶剂体系中特性黏数和重均分子量的关系:[η]=2.82×10-6Mw0.99dL/g,25℃,苯酚-四氯乙烷(1∶1,W/W);示差扫描量热法(DSC)和热失重分析(TGA)测定了该聚酯的热转变性能,结果表明该聚酯玻璃化转变温度为84℃,熔点为211℃,起始热分解温度高于370℃,具有良好的热稳定性;运用旋转流变仪研究了PEF的流变性能,结果表明,PEF熔体属于假塑性流体,随相对分子量的减小和温度升高,其非牛顿指数增大,在高于PEF熔点20~40℃,剪切速率为2.17×10-2~1.14×102s-1时,PEF的非牛顿指数为0.85左右.  相似文献   

20.
结晶性芳香聚酯高压结晶行为研究进展   总被引:2,自引:0,他引:2  
运用高压极限手段研究聚合物的结构、形态和性能是20世纪60年代以来兴起的一项聚合物前沿课题。本文主要结合作者自己的研究工作,重点叙述聚对苯二甲酸乙二醇酯(PET)的高压结晶行为研究,包括温度、压力、时间及分子量对PET高压结晶行为的影响,高压结晶PET的形态。以及对PET伸直链晶体结晶机理的探讨,同时简要介绍了对其它结晶性芳香聚酯诸如聚对苯二甲酸丁二醇酯(PBT)及聚对萘二甲酸乙二醇酯(PEN)的高压结晶行为研究,反映了该领域的研究概况和最新进展。并对今后的研究提出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号