首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
先利用羟基化多壁碳纳米管(MWCNTs-OH)与纸纤维制备了复合纤维纸(MWCNTs-OHP),然后将该复合纤维纸夹在两层PP隔膜之间组装三明治结构隔膜(PP@MWCNTs-OHP@PP)并应用于锂硫电池.利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱和元素能谱分析(EDS)等对材料进行结构和性能表征.电化学测试结果表明,PP@MWCNTs-OHP@PP三明治隔膜有效提高了锂硫电池的性能.在0.1C倍率下,电池首次放电比容量达到1532 m A·h/g,活性物质的利用率达到91.5%.在1C倍率下充放电循环500周后,放电比容量依然维持516 m A·h/g,每周循环衰减率为0.028%,库仑效率保持在96.4%以上.充放电倍率从3C减小到0.1C后,放电比容量从336 m A·h/g恢复到820 m A·h/g,显示出极佳的倍率性能.  相似文献   

2.
采用静电纺丝技术获得聚丙烯腈(PAN)纳米纤维,选用聚乙烯吡咯烷酮(PVP)作为造孔剂,在氮气气氛下1000℃高温碳化制备富介孔结构的含氮纳米碳纤维(MT-C).研究结果表明,当m(PVP)/m(PAN)为2∶1时,MT-C-0. 4比表面积为190. 8 m2/g,并且在0. 05C倍率下首次放电比容量高达1269. 4 m A·h/g,在0. 5C倍率下循环300周后比容量仍保持为658. 3 m A·h/g,每周容量衰减率为0. 14%.硫电极负载量为1 mg/cm2时,MT-C表现出最佳的电化学性能.  相似文献   

3.
采用活性炭吸附含Co~(2+),Mn~(2+),Ni~(2+)和Li~+的乙酸盐混合溶液,辅以高温热处理制备了碳包覆LiNi_(1/3)Co_(1/3)Mn_(1/3)O2(NCM@C).透射电子显微镜(TEM)观测结果表明,碳包覆层的厚度约为10 nm.电化学性能测试结果表明,在0.2C下首次放电比容量为181 m A·h/g,首次充放电效率为90.7%;在20C倍率下,NCM@C仍具有78 m A·h/g的放电比容量,而采用溶胶凝胶法制备的Li Ni_(1/3)Co_(1/3)Mn_(1/3)O2(NCM)的比容量仅为39 m A·h/g;NCM@C还表现出良好的循环稳定性,在0.2C倍率下循环50周容量保持率为88.1%,而NCM容量保持率仅为66.4%.  相似文献   

4.
以多壁碳纳米管(MWCNT)为模板,通过正硅酸乙酯(TEOS)的水解缩聚反应制得MWCNT@SiO2纳米同轴电缆.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)和电化学测试对样品的形貌、结构及电化学性能进行表征.结果表明,MWCNT表面包覆了一层厚度均匀的多孔SiO2层,利于其获得较好的储锂性能.作为锂离子电池负极材料,MWCNT@SiO2纳米同轴电缆表现出了较高的比容量和较好的循环性能.在100 m A/g电流密度下经过80次循环,MWCNT@SiO2纳米同轴电缆的放电比容量仍高达431.7 m A·h/g,高于石墨材料的理论比容量(372 m A·h/g).  相似文献   

5.
在球形SiO_2颗粒表面包覆适量的CuO,经还原得到铜包覆的多孔硅复合材料[p-Si@Cu(x)].利用X射线衍射、扫描电子显微镜、透射电子显微镜和比表面积分析等手段对样品的组成、物相结构、微观形貌和孔结构进行分析,并初步研究了材料的循环性能和倍率性能.结果表明,铜包覆量x=0.05时,在100 mA/g电流密度下,样品的首次放电容量为3596.9 mA·h/g,首次充电容量为2590.7 mA·h/g,首次库仑效率为72.03%;在1C倍率下可逆容量为1004.9 mA·h/g,0.1C倍率下循环100周后的可逆容量仍为1706.5mA·h/g,容量保持率为76.1%.  相似文献   

6.
通过简单的水热法制备了具有介孔结构的钛酸锂/还原氧化石墨烯(LTO/RGO)负极材料,并对该材料的结构及形貌进行了表征.结果表明,该方法获得的LTO/RGO负极材料具有高的比表面积且钛酸锂纳米片不易团聚.电化学性能测试结果表明,该材料在0. 1C倍率下的初始放电比容量达到182. 2 mA·h/g;在5C倍率下经过500周循环后容量仍保持在160. 6 mA·h/g,表现出较好的循环性能.  相似文献   

7.
采用简单有效的自聚合方法在Li_4Ti_5O_(12)颗粒表面包覆兼具离子导电和电子导电双重功效的聚多巴胺(PDA)/导电碳黑Super P(SP)复合包覆层,获得了电化学性能优异的锂离子电池负极材料.利用X射线粉末衍射(XRD)、扫面电子显微镜(SEM)、透射电子显微镜(TEM)、充放电循环曲线和循环伏安(CV)等方法对复合材料的形貌、结构以及电化学性能进行表征.结果表明,当PDA包覆层的厚度为10 nm、Super P的含量为3%(质量分数)时,得到的包覆材料展示了优异的电化学性能:0. 2C倍率下初始放电容量为175m A·h/g,循环150周后,可逆放电容量仍在160 m A·h/g以上.  相似文献   

8.
通过三聚氰胺甲醛树脂(MR)中的羟基与石墨烯氧化物(GO)中的羧基发生的沉淀反应来制备功能化的氧化石墨烯前驱体,然后利用溶胶-凝胶及高温热处理方法制备磷酸钒锂/石墨烯复合材料,利用此材料制备了电池电极,并对电极材料进行了结构和电化学表征。结果表明,所得磷酸钒锂为单斜晶系结构,石墨烯堆叠程度显著降低,也有效避免了磷酸钒锂颗粒的团聚,提高了材料的电化学性能。电池的充放电曲线极化较小,在3.0~4.3 V的区间内20 C倍率仍有86 mA·h/g的可逆容量。0.1 C循环100次后容量为119.7 mA·h/g,容量保持率94%。在3.0~4.8 V的高电压区间,10 C倍率下可逆容量80 mA·h/g,0.1 C循环100次后仍有145.6 mA·h/g的可逆容量。优异的循环和倍率性能以及较低的碳含量符合锂离子正极材料实用的要求。  相似文献   

9.
通过自组装方式采用一步法制备了锂离子电池硅碳复合电极材料.使用X射线衍射仪(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)等对样品结构进行表征.结果表明,聚乙烯吡咯烷酮(PVP)包覆的纳米硅颗粒(Si@PVP)均匀嵌入到具有三维网络纳米孔结构的导电石墨化炭黑(GCB)骨架中,形成核壳复合型(Si@PVP-GCB)纳米颗粒,既提高了该复合电极材料的导电性能,又改善了材料的机械强度.在纳米级GCB颗粒内部存在的中空石墨环结构和包覆在纳米Si颗粒外面的PVP包覆层都有效缓冲了纳米Si颗粒在充放电过程中较大的体积变化,从而使纳米Si颗粒更加稳定.电化学测试结果表明,Si@PVP-GCB电极材料在电流密度为50 m A/g时,经过100次循环后其可逆容量仍达到545 m A·h/g时,远高于商品化的石墨微球(GMs)电极材料的容量(理论容量为372 m A·h/g).  相似文献   

10.
采用一步水热法合成了棒状NiCo_2O_4前驱体,并通过调节水热反应过程中碳源(葡萄糖)的加入量以及后续热处理条件(气氛、温度)得到了一系列不同的NiCo_2O_4及NiCo_2O_4@C产物,并对这些产物的结构、形貌及电化学储锂性能进行了测试.结果表明,适当的葡萄糖加入量(0.5 g)配合合理的煅烧条件(400℃,氮气气氛)可以获得倍率性能和循环稳定性兼具的NiCo_2O_4@C纳米复合材料.在100 m A/g的电流密度下,该材料的首次充/放电比容量为634.1/767.2 m A·h/g,对应的库仑效率为82.7%,5周后的放电比容量为650.1 m A·h/g,容量保持率为84.74%,且在300 m A/g的高电流密度下可逆比容量仍可保持在225.9m A·h/g.  相似文献   

11.
锂钠合金相较于单一锂或者单一钠具有更优异的性能,以钠金属为正极、锂金属为负极,以LiPF6、NaClO4以及锂钠混合离子电解液作为电解液,组装成纽扣电池,在梯度电流密度下进行充放电,成功实现了锂钠合金的原位电化学制备。得益于锂、钠双电化学活性离子的协同效应,不同钠含量的锂钠合金为负极的锂钠混合离子电容器均呈现良好的电化学性能。尤其是低钠量的锂钠合金负极,添加NaClO4电解液时,活化的柠檬酸钾衍生碳(SCDC-活化)正极在1 A/g电流密度下循环300圈时仍能保持238 mA·h/g的比容量和99%的容量保持率。高钠量的锂钠合金负极,添加锂钠混合离子电解液时,SCDC-活化呈现了319 mA·h/g的比容量,并在循环1040圈时仍能保持93 mA·h/g的高比容量和98%的容量保持率。  相似文献   

12.
将聚苯乙烯磺酸(PSS)进行锂化处理后, 涂覆在锂箔表面, 在锂金属表面构筑一层均匀的聚苯乙烯磺酸锂(PSSLi)界面保护层, 形成PSSLi@Li复合电极. 通过红外光谱(FTIR)、 电化学阻抗谱(EIS)、 电池性能分析和有限元多物理场仿真模拟等方法, 对该复合电极进行了结构和性能研究. 结果表明, PSSLi界面保护层能有效地避免电解液与锂金属的直接接触, 抑制了“死锂”和锂枝晶的生成. 聚苯乙烯磺酸锂具有整齐排布的磺酸基团, 为锂离子提供了稳定的传输通道, 能够均匀化锂离子的迁移速率, 调节锂离子在电极表面的浓度分布, 并实现均匀的锂金属沉积/剥离. 电化学实验数据表明, 将该PSSLi界面层涂覆在铜箔表面进行库仑效率测试, 循环 350次实验后仍然能够保持在99.5%以上; 利用PSSLi@Li复合电极组装形成的对称电池, 在1 mA/cm2的电流密度、 1 mA·h/cm2的面积容量下, 能够稳定循环1200 h以上; PSSLi@Li与磷酸铁锂正极材料组装的全电池, 在1C倍率下循环500次后, 仍具有115 mA·h/g的容量, 容量保持率可达81%以上; 在8C的高倍率下, 该电池的容量可达到105 mA·h/g.  相似文献   

13.
The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Here, we use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach enabled us to obtain a uniform and thin (around tens of nanometers) sulfur coating on graphene oxide sheets by a simple chemical reaction-deposition strategy and a subsequent low-temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides enabled us to demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mA h g(-1), and stable cycling for more than 50 deep cycles at 0.1C (1C = 1675 mA g(-1)).  相似文献   

14.
在NH3辅助下将制备的V2O5空心球高温还原为V2O3空心球, 并利用透射电子显微镜、 扫描电子显微镜、 X射线衍射和X射线光电子能谱等手段对材料的形貌与结构进行表征. 将V2O3空心球与硫机械混合后, 不经过熔融复合直接作为锂硫电池的正极材料. 电化学测试结果显示, 在0.2C倍率下, 电池首次放电比容量达到1375 mA·h/g, 循环100次后放电比容量可以维持在815 mA·h/g; 在1C高倍率下, 电池首次放电比容量为710 mA·h/g, 经过500次循环后, 放电比容量仍能达到530 mA·h/g, 表明V2O3空心球的加入能够有效提高锂硫电池的循环性能.  相似文献   

15.
Graphene coating is commonly used to improve the performance of electrode materials,while its steric hindrance effect hampers fast ion transport with compromised rate capability.Herein,a unique single-walled carbon nanotubes(SWNTs)coating layer,as an alternative to graphene,has been developed to improve the battery behavior of iron-based anodes.Benefiting from the structure merits of mesoporous SWNTs layer for fast electron/ion transport and hollow Fe3O4 for volume accommodation,as-prepared Fe3O4@SWNTs exhibited excellent lithium storage performance.It delivers a high capacity,excellent rate capability,and long lifespan with capacities of 582 mA·h·g-1 at 5 A·g-1 and 408 mA·h·g-1 at 8 A·g-1 remained after 1000 cycles.Such performance is better than graphene-coated Fe3O4 and other SWNT-Fe3O4 architectures.Besides,SWNTs coating is also used to improve the sodium and potassium storage performance of FeSe2.The kinetics analysis and ex-situ experiment further reveal the effect of SWNTs coating for fast electron/ion transfer kinetics and good structure stability,thus leading to the superior performance of SWNTs-coated composites.  相似文献   

16.
Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite‐based anodes in lithium‐ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp2‐carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high‐performance carbon‐based anode materials. Herein, we employed flexible single‐walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip‐coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron‐/ion‐transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium‐ion batteries, the SWCNT‐GF electrode delivered a specific capacity of 953 mA h g?1 at a current density of 0.1 A g?1 and a high reversible capacity of 606 mA h g?1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g?1 and 189 mA h g?1 after 2200 cycles at 5 A g?1.  相似文献   

17.
钠离子电池锡负极因具有较高的理论容量(847 mA·h/g)、 高电导率和合适的工作电位而备受关注. 但锡基负极材料在循环过程中会发生巨大的结构变化, 进而导致活性材料粉化失活和比容量的快速下降. 本文成功制备了基于石墨氮化碳(g-C3N4)、 聚多巴胺衍生的氮掺杂碳(NC)和Sn纳米颗粒的复合物(g-C3N4/Sn/NC), 其中Sn纳米颗粒包埋在石墨氮化碳和氮掺杂碳中. 在此多层分级结构中, g-C3N4和NC的引入可以显著加速电子/离子的传输及电池反应动力学, 从而有助于Sn和钠离子之间的合金化反应; 此外, 这种复合结构有助于保持电极材料的结构稳定性, 进而可以获得优异的储钠性能. 作为钠离子电池负极材料, g-C3N4/Sn/NC在0.5 A/g电流密度下经历100次循环, 可逆容量可以达到450.7 mA·h/g; 在1.0 A/g电流密度下, 比容量为388.3 mA·h/g; 此外, 在1.0 A/g电流密度下, 经过400次循环后其比容量依旧能达到363.3 mA·h/g.  相似文献   

18.
锂金属具有高比容量(3860 mA·h/g)和低电化学电位(-3.04 V vs. SHE), 是一种极具潜力的新型电池负极材料. 然而, 锂金属电化学稳定性差, 导致电池循环寿命受限, 容易产生枝晶, 造成电池短路, 引发安全风险, 而其对空气及环境的高度敏感性也极大增加了电池制作的难度与成本, 限制了其应用推广. 改善锂金属负极的界面稳定性被认为是提升锂金属电池性能的重要途径. 本文通过简单直接的热压法在锂金属负极表面构筑了聚偏氟乙烯(PVDF)基双功能保护层, 使锂金属的空气稳定性提升至约120 min, 并延长了锂金属对称电池的循环寿命至约1200 h; 再通过在PVDF保护层内引入亲锂的SnO2粒子, 形成的无机有机复合保护层可以通过原位合金化反应提供锂沉积的形核位点, 在保持良好循环稳定性的基础上进一步降低成锂沉积的过电位, 极化过电位从0.016 V降低到0.007 V. 含有该保护层的全电池展现出约200次的长循环寿命与90%以上的高容量保持率, 在3C高倍率下放电比容量仍达127 mA·h/g. 提出的双功能电极界面保护层策略能有效提升锂金属负极空气稳定性和电化学性能.  相似文献   

19.
生物质甲壳素来源丰富、廉价易得、N含量高且具有纤维结构,经高温碳化即可获得导电性良好的多孔碳材料。 杯[4]醌(Calix[4]quinone,C4Q)的理论比容量高达447 mA·h/g,但它在传统电解液中的高溶解性和导电性差限制了其在锂电池中的实际应用。 为了解决上述问题,本文以甲壳素为原料,经高温处理制得了N掺杂的无定形碳纳米纤维材料(NACF),并利用其多孔结构吸附C4Q,制备出C4Q/NACF(质量比为1:1)复合材料。 该复合材料在0.1 C电流密度下,首圈放电比容量为426 mA·h/g,循环100圈后比容量为213 mA·h/g,甚至在1 C电流密度下,C4Q/NACF复合材料仍有188 mA·h/g的放电比容量。 实验结果表明,利用NACF碳材料固载C4Q的方法可以提高C4Q锂离子电池的循环稳定性和导电性。  相似文献   

20.
以过渡金属乙酸盐和乙酸锂为原料,柠檬酸为螯合剂,通过溶胶-凝胶法结合高温煅烧法制备了锂离子电池富锂锰基正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2,采用X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌及电化学性能进行了表征.结果表明:x=0.5时,在900°C下煅烧12h得到颗粒均匀细小的层状xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2材料,并具有良好的电化学性能,在室温下以20mA·g-1的电流密度充放电,2.0-4.8V电位范围内首次放电比容量高达260.0mAh·g-1,循环40次后放电比容量为244.7mAh·g-1,容量保持率为94.12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号