首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
用单晶X射线衍射方法测定了6-苯甲酰基-5-(邻氯苯基)-2,3,3a,4,5,6-六氢-3a-苯基-(1,2,3-三乙酸乙酯基)-1H-吡咯啉[1,2-a][1,5-]苯并二氮杂的晶体结构.单斜晶系,空间群P2_1/c,a=1.3235(5)nm,b=1.7142(6)nm,c=1.6204(6)nm,β=100.49(3)°,Z=4,最终偏离因子R=0.062,R_w=0.075.晶体结构测定结果表明分子中二氮杂七元环采取船式构象,动力学模拟退火计算结果的最低能量构象为椅式,两者的能量差不大,表明这种船式椅式的变化是非常容易发生的.  相似文献   

2.
采用密度泛函理论B3LYP/6-311+G*方法,计算研究了(F2GaN3)n(n=1~4)簇合物的结构和性质.研究表明,簇合物(F2GaN3)n(n=2~4)的优化构型均拥有Ga-Na-Ga连接的环状结构.讨论了几何参数随聚合度的变化关系.三聚体的船式构象较椅式构象的能量低16 kJ·mol-1,具有S4对称性的四聚...  相似文献   

3.
韩毓鼎 《大学化学》1990,5(5):53-54
一、问题的提出环己烷有多少种构象异构体?它们的比例是多少?这个问题在国内目前的教科书中,不尽一致.在一些教材中,仍仅着眼于键角张力的影响.认为仅有两种极限构象,一种叫“椅式”,另一种叫“船式”.它不仅忽略了扭船式(twist),而且“极端”的提法也不准确,因为在能量-构象转变座标图上,它们并不处于两个极端,扭船式也不应看做是船式和椅式之间的过渡状态.关于各种构象在室温下的比例,说法有:船式:椅式=1∶1000,扭船式:椅式=1∶1000,扭船式:椅式=1∶10000等.本文想就究竟环己烷有几种异构体,在室温下,它们的比  相似文献   

4.
用Hartree-Fock/6-31G*从头算确定了沙蚕毒和杀虫环分子的几何构型,在全局优化中发现杀虫环分子的椅式和船式两种稳定构象,在二级Moller-plesset微扰理论MP2/6-31*水平下,椅式较船式稳定27.06kJ/mol.用MP2/6-31G*波函数计算电子相关校正的分子静电势,以此为基础讨论生物活性与静电势的关系。发现对此二分子,Mulliken布居分析获得的原子净电荷存在问题,本文用Breneman提出的从静电势导出原子净电荷的CHELPG方法计算了原子净电荷。  相似文献   

5.
用单晶X射线衍射方法测定了6-苯甲酰基-5-(邻氯苯基)-2,3,3a,4,5,6-六氢-3a-苯基-(1,2,3-三乙酸乙酯基)-1H-吡咯啉[1,2-a][1,5-]苯并二氮杂卓的晶体结构。单斜晶系,空间群P2~1/c,a=1.3235(5)nm,b=1.7142(6)nm,c=1.6204(6)nm,β=100.49(3)°,Z=4,最终偏离因子R=0.062,R~w=0.075。晶体结构测定结果表明分子中二氮杂卓七元环采取船式构象,动力学模拟退火计算结果的最低能量构象为椅式,两者的能量差不大,表明这种船式<->椅式的变化是非常容易发生的。  相似文献   

6.
用PM3分子轨道方法研究了α-环糊精的包合作用对环己烷构象平衡的影响。发现α-环糊精的包合作用可以改变环己烷的构象平衡。计算结果表明,虽然环己烷的椅式构象比船式构象稳定18.5 kJ*mol-1, 但在α-环糊精的包合物中,船式环己烷包合物比椅式环己烷包合物稳定4.4 kJ*mol-1。因此,超分子体系中客体分子的构象平衡不能简单地从其游离态的构象平衡外推得到,而应该考虑在超分子体系中分子间相互作用对构象的影响。  相似文献   

7.
用单晶X射线衍射方法测定了6-苯甲酰基-5-(邻氯苯基)-2,3,3a,4,5,6-六氢-3a-苯基-(1,2,3-三乙酸乙酯基)-1H-吡咯啉[1,2-a][1,5-]苯并二氮杂卓的晶体结构。单斜晶系,空间群P2~1/c,a=1.3235(5)nm,b=1.7142(6)nm,c=1.6204(6)nm,β=100.49(3)°,Z=4,最终偏离因子R=0.062,R~w=0.075。晶体结构测定结果表明分子中二氮杂卓七元环采取船式构象,动力学模拟退火计算结果的最低能量构象为椅式,两者的能量差不大,表明这种船式<->椅式的变化是非常容易发生的。  相似文献   

8.
在B3LYP/6-31G(d,p)和TDB3LYP/6-31++G(d,p)//CIS/6-31G(d,p)水平上研究了2-(2-巯苯基)苯并噁唑及其衍生物基态和激发态分子内质子转移现象,并探讨取代基电子效应对分子内质子转移的影响,研究结果表明,在基态时,硫醇式异构体为优势构象,供电子取代基使基态分子内正向质子转移能垒(烯醇式→酮式)升高;而吸电子取代基则可降低能垒,有利于基态分子内质子转移并有助于硫酮式异构体的稳定.在激发态时,硫酮式结构为优势构象,所研究的2-(2-巯苯基)苯并噁唑化合物及衍生物均可以发生无能垒或低能垒(≤1.5kJ/mol)的激发态分子内质子转移.巯苯基部分是激发态失活的主要活性部分,供电子基团有利于激发态的质子转移,吸电子基团使激发态跃迁困难,不利于激发态的质子转移.  相似文献   

9.
用单晶X射线衍射方法测定了6-苯甲酰基-5-(邻氯苯基)-2,3,3a,4,5,6-六氢-3a-苯基-(1,2,3-三乙酸乙酯基)-1H-吡咯啉[1,2-a][1,5-]苯并二氮杂(艹卓)的晶体结构.单斜晶系,空间群P21/c,a=1.3235(5)nm,b=1.7142(6)nm,c=1.6204(6)nm,β=100.49(3)埃琙=4,最终偏离因子R=0.062,Rw=0.075.晶体结构测定结果表明分子中二氮杂(艹卓)七元环采取船式构象,动力学模拟退火计算结果的最低能量构象为椅式,两者的能量差不大,表明这种船式←→椅式的变化是非常容易发生的.  相似文献   

10.
多孔聚苯醚的合成及气体储存   总被引:1,自引:0,他引:1  
通过厄尔曼缩合反应合成了一种具有dia-c5 拓扑结构的多孔聚苯醚JUC-Z6, 并对其结构进行了表征. 结果表明, 该化合物具有高热稳定性(214℃ 失重5%), 高化学稳定性、 高BET比表面积(192 m2/g)及窄孔径分布(1.36 nm). 低压气体吸附测试结果表明, JUC-Z6在多孔材料中具有较高的吸附焓(氢气4.1 kJ/mol, 二氧化碳33.7 kJ/mol, 甲烷4.1 kJ/mol).  相似文献   

11.
We have estimated the hydration free energy for 20 neutral drug-like molecules, as well as for three series of 6–11 inhibitors to avidin, factor Xa, and galectin-3 with four different continuum solvent approaches (the polarised continuum method the Langevin dipole method, the finite-difference solution of the Poisson equation, and the generalised Born method), and several variants of each, giving in total 24 different methods. All four types of methods have been thoroughly calibrated for a number of experimentally known small organic molecules with a mean absolute deviation (MAD) of 1–6 kJ/mol for neutral molecules and 4–30 kJ/mol for ions. However, for the drug-like molecules, the accuracy seems to be appreciably worse. The reason for this is that drug-like molecules are more polar than small organic molecules and that the uncertainty of the methods is proportional to the size of the solvation energy. Therefore, the accuracy of continuum solvation methods should be discussed in relative, rather than absolute, terms. In fact, the mean unsigned relative deviations of the best solvation methods, 0.09 for neutral and 0.05 for ionic molecules, correspond to 2–20 kJ/mol absolute error for the drug-like molecules in this investigation, or 2–3,000 in terms of binding constants. Fortunately, the accuracy of all methods can be improved if only relative energies within a series of inhibitors are considered, especially if all of them have the same net charge. Then, all except two methods give MADs of 2–5 kJ/mol (corresponding to an uncertainty of a factor of 2–7 in the binding constant). Interestingly, the generalised Born methods typically give better results than the Poison–Boltzmann methods. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Porous materials resembling zeolites that are composed of organic and inorganic building units were synthesized and characterized. Control of pore and channel size was achieved by using different-sized cations. The metal-assembled, anionic cage molecule, Co(4)1(2)(8-), with a hydrophobic cavity and four carboxylate rich arms, was used as a structural unit for the formation of materials with pores and channels. When assembled into a solid material with dications (Mg(2+), Ca(2+), Sr(2+), and Ba(2+)), Co(4)1(2)(8-) arranges into sheets of cages linked together by cations. The series of materials based on Co(4)1(2)(8-) and containing alkaline earth cations was characterized using X-ray crystallography. The magnesium material packs with cages close together, has small channels, and has cation-carboxylate linkages in three dimensions. The calcium material has cages packed with voids between them and has 5 x 10 A channels and 10 x 21 A pores. The strontium and barium materials also pack with voids between the cages and similarly to each other. They have 11 x 13 A and 11 x 11 A channels and 10 x 27 A and 9 x 27 A pores, respectively. Each of these materials has many (20-50) solvent water molecules associated with each cage. The associated water can be removed from and adsorbed by the materials. The heat of water binding has been measured to be -52 kJ/mol (Mg(4)Co(4)1(2)); -47 kJ/mol (Ca(4)Co(4)1(2)); -48 kJ/mol (Sr(4)Co(4)1(2)); -49 kJ/mol (Ba(4)Co(4)1(2)).  相似文献   

13.
Metal-assembled resorcinarene-based cages enclose space and entrap organic molecules from water. Addition of cobalt(II) ions to a neutral, aqueous solution of a resorcinarene that has iminodiacetic acids attached to its upper rim results in the formation of cages. These cages not only entrap organic molecules, but they do so in a selective manner. Guests with optimum size, shape, and polarity are preferentially entrapped. For example, selection of p-xylene is twenty thousand times more favorable than that of m-xylene. The enthalpy of resorcinarene deprotonation and cage formation was calculated by performing calorimetry studies and ranged from -305 to -348 kJ mol(-1). The change in enthalpy of guest encapsulation varied by as much as 43 kJ mol(-1). The differences in change in free energy of guest encapsulation varied by -16 kJ mol(-1). The changes in enthalpy and free energy of guest encapsulation were used to calculate the changes in entropy, which ranged from -97 to +37 J mol(-1) K(-1). An enthalpy-entropy compensation of guest encapsulation was observed.  相似文献   

14.
High resolution spectrum of methyl lactate, a chiral alpha-hydroxyester, has been investigated using a molecular jet Fourier transform microwave spectrometer. High level ab initio calculations were employed to study the conformational isomerism of methyl lactate. The observed rotational spectrum confirms that the most stable conformer has an intramolecular hydrogen bond of OH...O==C type, as predicted by the ab initio calculations. The internal rotation barrier heights of the ester methyl group and the alpha-carbon methyl group were calculated to be 5.4 and 14.5 kJ mol(-1) at the MP2/aug-cc-pVDZ level of theory for the most stable conformer. The internal rotation splittings due to the ester methyl group were observed and analyzed and the ester methyl group tunneling barrier height was determined experimentally to be 4.762 (3) kJ mol(-1).  相似文献   

15.
Photodegradation of organic pollutants strongly depends on design of metal oxide semiconductor photocatalysts. Graphene, if composited with ZnO, can effectively enhance its photocatalytic performance for the eradication of pollutants from aqueous medium. Here in, ZnO-rGO is reported as highly active catalyst for degradation of methylene blue. A 200-mg/L solution of methylene blue dye was completely degraded within 1 h in comparison to 74% and 56% degradation over ZnO and rGO, respectively. The commonly used mechanisms of heterogeneous catalytic reactions, the Langmuir-Hinshelwood mechanism, and the Eley-Rideal mechanisms, were used to describe the reaction kinetics. The Langmuir-Hinshelwood mechanism was found as more favorable in this study. Apparent activation energy, Eap, true activation energy, ET, entropy, ΔS, and enthalpy, ΔH were calculated as 36.2 kJ/mol, 13.1 kJ/mol, 197.5 J/mol, and 23.1 kJ/mol, respectively.  相似文献   

16.
Para-bisguanidinyl benzene 1 and its N-permethylated derivative 2 are both sufficiently strong bases to afford not only the monocations [1+H]+ and [2+H]+, but also the doubly protonated ions, [1+2H]2+ and [2+2H]2+, in the gas phase. The title ions generated via electrospray ionization are probed by collision-induced dissociation experiments which inter alia reveal that the dicationic species [1+2H]2+ and [2+2H]2+ can even undergo fragmentation reactions with maintenance of the 2-fold charge. Complementary results from density functional theory predict PAs above 1000 kJ mol(-1) for the neutral compounds, i.e., PA(1) = 1025 kJ mol(-1) and PA(2) = 1067 kJ mol(-1). Due to the stabilization of the positive charge in the guanidinium ions and the para-phenylene spacer separating the basic sites, even the monocations bear sizable proton affinities, i.e., PA([1+H]+) = 740 kJ mol(-1) and PA([2+H]+) = 816 kJ mol(-1).  相似文献   

17.
The potential energy surface (PES) of C(2)H(5)(+)-N(2) is characterized in detail by infrared photodissociation (IRPD) spectroscopy of mass-selected ions in a quadrupole tandem mass spectrometer and ab initio calculations at the MP2/6-311G(2df,2pd) level. The PES features three nonequivalent minima. Two local minima, 1-N(2)(H) and 1-N(2)(C), are adduct complexes with binding energies of D(0) = 18 and 12 kJ/mol, in which the N(2) ligand is weakly bonded by electrostatic forces to either the acidic proton or the electrophilic carbon atom of the nonclassical C(2)H(5)(+) ion (1), respectively. The global minimum 3 is the ethanediazonium ion, featuring a weak dative bond of D(0) = 38 kJ/mol. This interaction strength is sufficient to switch the C(2)H(5)(+) structure from nonclassical to classical. The 1-N(2)(C) isomer corresponds to the entrance channel complex for addition of N(2) to 1 yielding the product 3. This reaction involves a small barrier of 7 kJ/mol as a result of the rearrangement of the C(2)H(5)(+) ion. The partly rotationally resolved IRPD spectrum of C(2)H(5)(+)-N(2) recorded in the C-H stretch range is dominated by four bands assigned to 3 and one weak transition attributed to 1-N(2)(H). The abundance ratio of 1-N(2)(H) and 3 estimated from the IRPD spectrum as ~1% is consistent with the calculated free energy difference of 12 kJ/mol. As the ethanediazonium ion escaped previous mass spectrometric detection, the currently accepted value for the ethyl cation affinity of N(2) is revised from -ΔH(0) = 15.5 ± 1.5 to ~42 kJ/mol. The first experimental identification and characterization of 3 provides a sensitive probe of the electrophilic character and fluxionality of the ethyl cation. Comparison of 3 with related alkanediazonium ions reveals the drastic effect of the size of the alkyl chain on their chemical reactivity, which is relevant in the context of hydrocarbon plasma chemistry of planetary atmospheres and the interstellar medium, as well as alkylation reactions of (bio)organic molecules (e.g., carcinogenesis and mutagenesis of DNA material).  相似文献   

18.
Seventeen superbasic phosphazenes and two Verkade's bases were used to supplement and extend the experimental gas-phase basicity scale in the superbasic region. For 19 strong bases the gas-phase basicity values (GB) were determined for the first time. Among them are such well-known bases as BEMP (1071.2 kJ/mol), Verkade's Me-substituted base (1083.8 kJ/mol), Et-N=P(NMe2)2-N=P(NMe2)3 (Et-P2 phosphazene, 1106.9 kJ/mol), and t-Bu-N=P(NMe2)3 (t-Bu-P1 phosphazene, 1058.0 kJ/mol). For the first time experimental GB values were determined for P2 phosphazenes. Together with our previous results self-consistent experimental gas-phase basicity scale between 1020 and 1107 kJ/mol is now established. This way an important region of the gas-phase basicity scale, which was earlier dominated by metal hydroxide bases, is now covered also with organic bases making it more accessible for further studies. The GB values for several superbases were calculated using density functional theory at the B3LYP/6-311+G** level. For the phosphazene family the standard deviation of the correlation between the experimental and theoretical values was 6.5 kJ/mol.  相似文献   

19.
Thermodynamic parameters for the interaction of protonated biogenic polyamines with inorganic or organic polyanions were studied potentiometrically (H(+)-glass electrode) and calorimetrically, at 25 degrees C. No background salt was used in the measurements to avoid interferences, and the formation constants and formation enthalpies were extrapolated to zero ionic strength. Species formed are ALH(r) [L=Cl(-), SO(4)(2-), HPO(4)(2-), P(2)O(7)(4-) and P(3)O(10)(5-); tartrate, malate, citrate, glutamate, 1,2,3-propanetricarboxylate, 1,2,3,4-butanetetracarboxylate], with r=1,2...(n+m-2) and r=1,2...(n+m-1) for inorganic and organic ligands, respectively (n, m=maximum degree of protonation of amine and ligand, respectively). The stability of the various species formed is a function of charges involved in the formation reaction. DeltaH(0) values are generally positive, and therefore these complexes are entropically stabilized. Results are discussed in connection with several previously reported data on similar systems. DeltaG(0) and TDeltaS(0) follow a linear trend as a function of polyammonium cation and inorganic or carboxylic anion charges. DeltaG(0) and TDeltaS(0) charge relationships are reported. In particular, mean values of DeltaG(0) and TDeltaS(0) for single interaction were calculated: DeltaG(0)=7.0 kJ mol(-1) n(-1), TDeltaS(0)=9.1 kJ mol(-1) n(-1) and DeltaG(0)=5.7 kJ mol(-1) n(-1) and TDeltaS(0)=8.7 kJ mol(-1) n(-1), for the species of inorganic and organic polyanions, respectively (n=number of possible salt bridges). A linear relationship was also found for TDeltaS(0) versus DeltaG(0), whose equation is TDeltaS(0)=-7-1.39 DeltaG(0) (with r=0.9409; r, correlation coefficient). The body of correlations found for these thermodynamic parameters shows quite good predictive value.  相似文献   

20.
We present a study of the electrical properties of electrochemically doped conjugated polymers using polymeric light-emitting electrochemical cells (PLECs) and interpreting the results according to a phenomenological model (PM) which assumes that, above the device turn-on voltage, the bulk transport properties of the doped organic semiconductor are responsible for the main contribution to the whole device conductivity. To confirm the predictions of this model, the dependence of the conductivity of PLECs with different parameters is evaluated and compared with the behavior expected for a doped semiconducting polymeric material. The organic semiconductor doping level, the blend concentration of organic semiconducting molecules, the device thickness, the charge carrier mobility, and the temperature are the parameters varied to perform this analysis. We observed that the device conductivity is independent of the active layer thickness, weakly dependent on the temperature, but strongly dependent on the semiconductor doping level, on the semiconductor fraction in the blend, and on the intrinsic charge carrier mobility. These results were well described by the variable range hopping (VRH) model, which has been widely employed to describe the charge transport in doped semiconducting polymeric materials, confirming the prediction of the phenomenological model. The current analysis demonstrates that PLECs are a suitable system for studying, in situ, the electrochemical doping of semiconducting polymers, permitting the evaluation of material properties as, for instance, the density of electronic charge carriers (and, consequently, the ionic charge carrier concentration) necessary to achieve the maximum electrochemical doping level of the organic semiconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号