首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
锂离子电池正极材料尖晶石LiMn204的研究现状   总被引:4,自引:0,他引:4  
从制备方法,循环性能,比容量,高温性能等方面对近年来有关LiMn204尖晶石的研究作一综述;讨论合成方法,反应条件,尖晶石的晶体结构及改性对正极材料性能的影响,并预示该类正极材料今后的研究方向。  相似文献   

2.
陈丽辉  吴秋晗  潘佩  宋子轩  王锋  丁瑜 《应用化学》2018,35(11):1384-1390
采用模板导向法和高温固相法制备尖晶石型八面体结构的LiMn2O4锂离子电池正极材料,研究了该材料的结构和电化学性能。 电化学性能研究表明,该电极材料具有良好的循环稳定性和倍率性能,在2.5~4.5 V电压范围,电流密度为100 mA/g时,首周充放电比容量分别为147和179 mA·h/g,循环50周后,其充放电比容量仍分别保持在180/181 mA·h/g。 优良的电化学性能可能归因于尖晶石LiMn2O4的形貌结构特征,该方法为制备锂离子电池正极材料提供了思路和依据。  相似文献   

3.
尖晶石锂锰氧化物电极首次脱锂过程的EIS研究   总被引:8,自引:0,他引:8  
研究了尖晶石锂锰氧化物电极首次脱锂过程中的电化学阻抗特征. 通过选取适当的等效电路拟合实验所得的电化学阻抗谱数据, 获得了首次脱锂过程中固体电解质相界面膜(SEI膜)的电阻、电容以及电荷传递电阻、双电层电容等随电极极化电位的变化规律.  相似文献   

4.
掺氟锂钒氧化物的电化学性能;锂离子电池;正极材料;氟掺杂剂;锂钒氧化物  相似文献   

5.
正尖晶石LiMn_2O_4电化学性能研究   总被引:6,自引:1,他引:5  
采用高温固相反应合成了尖晶石LiMn2 O4 锂离子电池正极材料 ,并对其性能进行研究 .综合考察了影响材料电化学性能的主要因素 ,诸如原材料的选择、合成温度、Li/Mn比以及添加金属元素Co等 .研究了材料在高温下的电化学性能和影响因素 ,并分析了LiMn2 O4 在电解质中的溶解和引起容量衰减的原因  相似文献   

6.
近年来高熵氧化物因其独特的四大效应,作为高性能的锂离子电池(LIBs)负极材料受到广泛关注.本研究借助于形貌和缺陷调控策略调控晶格畸变和氧空位,以金属硝酸盐为金属源,葡萄糖和尿素为低共熔溶剂,采用基于低共熔溶剂辅助的固相反应法制备了La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3以及Li、Na元素掺杂的La(Li1/6 Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3和La(Na1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3钙钛矿型高熵氧化物纳米晶粉体.测试结果表明:所制备的高熵氧化物均为单相钙钛矿结构,其形貌为具有...  相似文献   

7.
储能技术的革命性变化对下一代锂离子电池(LIBs)负极材料提出了更高的要求。近年来,一类具有复杂化学计量比的新型材料——高熵氧化物(HEOs)逐渐进入人们的视野并走向繁荣。理想的元素可调节性和吸引人的协同效应使HEOs有望突破传统阳极的综合性能瓶颈,为电化学储能材料的设计和发展提供新的动力。本文分别从化学成分调控和结构设计2个方面结合本课题组近年来的研究及国内外重要文献,综述了HEOs作为LIBs负极材料的研究进展。在化学成分调控方面通过金属杂原子掺杂、非金属杂原子掺杂来提高HEOs的本征活性。在结构设计方面,通过构建一维结构、二维结构、三维结构、空心结构以及复合碳材料来增加HEOs的反应活性位点数量,从而提高储锂性能。最后,对HEOs在LIBs领域的发展进行了展望。  相似文献   

8.
储能技术的革命性变化对下一代锂离子电池(LIBs)负极材料提出了更高的要求。近年来,一类具有复杂化学计量比的新型材料——高熵氧化物(HEOs)逐渐进入人们的视野并走向繁荣。理想的元素可调节性和吸引人的协同效应使 HEOs有望突破传统阳极的综合性能瓶颈,为电化学储能材料的设计和发展提供新的动力。本文分别从化学成分调控和结构设计2个方面结合本课题组近年来的研究及国内外重要文献,综述了HEOs作为LIBs负极材料的研究进展。在化学成分调控方面通过金属杂原子掺杂、非金属杂原子掺杂来提高HEOs的本征活性。在结构设计方面,通过构建一维结构、二维结构、三维结构、空心结构以及复合碳材料来增加HEOs的反应活性位点数量,从而提高储锂性能。最后,对HEOs在LIBs领域的发展进行了展望。  相似文献   

9.
刘德尧  尤金跨 《电化学》1999,5(3):276-280
利 用 X R D、 I C P、 T G A 、 D T A 及 恒 流 充 放 电 等 方 法 研 究 分 析 了 一 种 特 殊 天 然 结 构 Mn O2( N M D) 材料的结 构、组成 以及电 化学嵌锂 特性. X R D 分析 表明,该样 品材料 是由钠水 锰矿以及水羟 锰矿复 合结构组 成的 Mn O2 纳米 纤 维. 充放 电 循环 结果 显 示,其 前 期循 环容 量 可高 达 150m Ah/ g 左 右,但性 能尚不够 稳定. 本文采 用一种 水热法高 压嵌锂处 理,可将 N M D 样品 转变为 具有3 ×3 大隧道结 构的钡 镁锰矿( Todorokite) 型锂 锰氧 化 物,既 增 强了 Li + 嵌 入 隧道 或 层间 结 构 的循环稳定 性. 并 显著提 高锂锰氧 化物电 极材料性 能的 稳定 性,以 充放 电电 流密 度 为0 .8 m A/c m 2 ,经过180 次 循环后 其比容量 仍具有 110 m Ah/ g . 该类 大隧道结 构锂锰 氧化物可 作为一 种3 V 的锂离子电极 材料.  相似文献   

10.
采用金属硝酸盐为金属源, NaOH和Na2CO3为沉淀剂, 利用共沉淀法制备了La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料, 研究了粉体的微观结构和电化学性能, 并与传统的LaCoO3的电化学性能进行了比较. 通过扫描电子显微镜(SEM)、 X射线衍射(XRD)和N2吸附-脱附测试对其进行了表征, 结果表明, 所制备的 La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物为钙钛矿结构, 形貌为球状, 且各组成元素分布均匀, 比表面积(19.83 m2/g)较高. 储锂性能研究表明, La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料具有较高比容量、 优异的倍率性能和循环稳定性, 在200 mA/g的电流密度下, 其首次放电比容量为855.8 mA·h/g, 循环150次后, 比容量增加到771.8 mA·h/g, 远高于理论比容量(331.6 mA·h/g); 在3000 mA/g的高电流密度下循环500次后, 其仍能保持320 mA·h/g的可逆比容量, 接近其理论比容量, 容量保持率高达95.1%. La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物储锂性能的大幅度提高, 主要归因于熵稳定的晶体结构和多主元协同效应, 使其具有较大的锂离子扩散系数(11.2×10-18 cm2/s)和较高的赝电容贡献.  相似文献   

11.
Li1+xMn2O4的溶胶-凝胶法合成及其电化学性能   总被引:3,自引:1,他引:3  
李琪  乔庆东 《应用化学》2003,20(12):1171-0
锂离子电池;锂锰氧化物;尖晶石结构;Li1+xMn2O4的溶胶-凝胶法合成及其电化学性能  相似文献   

12.
Nb 掺杂LiFePO4/C 的一步固相合成及电化学性能   总被引:1,自引:0,他引:1  
用固相法一步合成了Nb掺杂的LiFePO4/C复合材料, 研究了Nb掺杂量对材料电化学性能的影响. 结果表明, Nb掺杂后LiFePO4/C复合材料的电化学性能明显提高. 在0.5C、1C和2C充放电倍率下, 名义成分为Li0.96Nb0.008FePO4/C正极材料的比容量分别为161、148和132 mAh•g−1, 已达到实用化水平. 阻抗谱和循环伏安特性测试显示, Nb掺杂有效地降低了复合材料电极的阻抗和极化, 说明Nb掺杂的主要作用是提高了LiFePO4的电子电导率.  相似文献   

13.
聚吡咯的合成与新型双离子电池性能研究   总被引:10,自引:0,他引:10  
用反相微乳聚合法制备了十二苯磺酸(DBSA)掺杂的导电聚吡咯纳米材料, DBSA既作为表面活性剂又作为掺杂剂, 能够提高聚吡咯的导电性. 用制备出的DBSA-PPy 为正极材料, 石墨为负极材料组装双离子电池, 测试结果表明, C/DBSA-PPy 电池的电化学性能已达到传统锂离子电池的水平, 这是因其具有较高的导电性和特殊掺杂结构的聚吡咯使其电化学性能得到优化.  相似文献   

14.
金属氧化物可通过电化学转换反应与锂离子及钠离子发生多电子可逆结构转换,是一类极具应用前景的高容量锂离子和钠离子电池负极材料。实验以氧化石墨烯和铁盐为前驱体,采用简单的溶剂法,成功将Fe2O3纳米单晶粒子均匀负载于石墨烯的导电片层上,获得Fe2O3/rGO(还原氧化石墨烯)纳米复合材料。复合电极在锂离子和钠离子电池中都表现出优异的充放电性能和循环稳定性。实验结果表明石墨烯的包覆不仅能降低Fe2O3发生转换反应的电荷传递阻抗,而且能够稳定电极在循环过程中带来的结构转变,极大改善电极大电流充放能力和循环稳定性。本研究为发展高容量的锂离子和钠离子电池负极材料提供了可行的途径。  相似文献   

15.
煤沥青基中间相炭微球的电化学性能与微观结构   总被引:2,自引:1,他引:2  
将煤焦油沥青基中间相炭微球(MCMB)在一定的工艺条件和不同最高热处理温度(HTTmax)下进行高温热处理,利用XRD和Raman光谱分析了不同HTTmax下MCMB试样的微观结构.借助恒电流充放电和粉末微电极循环伏安法考察了试样的宏观电化学性能,探讨了中间相炭微球宏观电化学性能与其微观结构间的联系.研究表明,随着HTTmax的升高,中间相炭微球从低温热解炭的结构特征向石墨晶体结构转变,材料的电化学贮锂机制相应地也从微孔贮锂向石墨层间嵌锂机制转变.MCMB特殊的弧状碳层走向使得石墨微晶的La值未能随HTTmax的升高而大幅度增长,这是高温热处理MCMB的宏观电化学性能随HTTmax的升高而不断提高的内在原因.  相似文献   

16.
采用草酸盐共沉淀法制备了钠掺杂改性的Li0.98Na0.02Ni0.6Co0.2Mn0.2O2正极材料,借助X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量分散谱(EDS)、感应耦合等离子体原子发射光谱(ICP-AES)、电化学阻抗谱(EIS)和恒电流充放电测试等手段对材料的颗粒形貌、晶体结构和电化学性能进行了研究.结果表明,掺钠后的材料具有更完善的α-NaFeO2结构(空间群为+/Ni2+阳离子混排和更大的Li层间距,易于Li+在晶格中的快速脱嵌迁移.电化学性能测试结果证实掺钠样品具有优异的循环稳定性和高倍率性能,在2.7~4.3 V,1C下循环100次后,放电比容量仍为146 mA·h/g(容量保持率为95.4%),在0.1C,0.2C,0.5C,1C,3C,5C,10C和20C时的放电比容量分别为181,168,162,155,143,136,126和113 mA·h/g.  相似文献   

17.
金属氧化物掺杂改善LiFePO4电化学性能   总被引:16,自引:0,他引:16  
采用氧化物前驱体对磷酸铁锂(LiFePO4)进行少量金属离子掺杂,并用XRD,SEM和恒电流充放电对掺杂的LiFePO4进行了研究。结果表明,少量的掺杂离子在很大程度上提高了LiFePO4的电化学性能,特别是大电流放电性能。1.0 mol%的Nb5+掺杂LiFePO4的0.1 C放电容量约150 mAh·g-1;即使在3 C倍率下放电,也有117 mAh·g-1的容量。掺杂的效果与掺杂离子的半径、价态密切相关,半径小、价态高的离子对提高LiFePO4的电化学性能有利。在掺杂量较小时(<2.0 mol%),掺杂效果与掺杂离子的浓度关系不大。  相似文献   

18.
用真空固相反应与液相还原结合的方法,合成了锂离子电池正极材料——金属银掺杂的覆碳磷酸铁锂(LiFePO4/Ag/C),用X射线衍射、扫描电镜、循环伏安、交流阻抗等技术研究其结构、形貌及电化学性能。结果表明,该正极材料为橄榄石型晶体、类球形颗粒(粒径范围约为0.5~2.0μm);Ag掺杂能使合成的LiFePO4颗粒粒径更小、分布更均匀,有效地提高其电化学循环性能;LiFePO4/Ag/C电极0.1C倍率充放的首次放电比容量为138.2mAh/g,50次循环的放电比容量为130.1mAh/g,最高放电比容量为148.3mAh/g;LiFePO4/Ag/C正极材料具有良好的锂离子传导性能,其锂离子扩散系数(DLi+)为8.94×10-15cm2/s。  相似文献   

19.
Na-Mn-O正极材料的合成及电化学性能   总被引:4,自引:0,他引:4  
以Mn(CH3COO)2·4H2O为锰源, 以Na2CO3为钠源, 通过溶液-凝胶法合成干凝胶前驱体, 将前驱体在空气气氛中焙烧得到Na-Mn-O正极材料. 并用傅立叶红外光谱(FT-IR), 热重分析(TG), X射线衍射(XRD), 扫描电镜(SEM), 恒流充放电测试等对材料结构和性能进行研究. 结果表明,600 ℃焙烧的样品为结构稳定的层状锰酸钠, 属于六方层状P2结构, 空间群为P63/mmc, 通过PowderX软件计算得到其晶胞参数为a=0.284 nm, c=1.116 nm. Na-Mn-O正极材料在Li+嵌入和脱出过程中, 部分Na+从层状主晶格中脱出, 使得Li+在MnO6层间的嵌/脱阻力减小(由于Na+(0.095 nm)半径比Li+(0.076 nm)大), 电化学性能明显改善. 在充放电电流密度为25 mA·g-1, 电压在2.0-4.3 V范围时, 600 ℃焙烧的样品第二次放电容量高达176 mAh·g-1, 20次循环后, 容量保持率仍有90.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号