首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of multi-block copolymers, poly(L-lactide)-b-poly (?-caprolactone) (PLLA-b-PCL) were synthesized. The first step of the synthesis consisted of the transesterification between the PLLA and 1,4-Butanediol, followed by the copolymerization of PLLA-diols and PCL, using isophorone diisocyanate (IPDI) as a coupling agent. The synthesized polymers were characterized by Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). PLLA/PCL block copolymers were electrospun into ultrafine fibers. The morphology of the electrospun fibrous scaffolds were investigated by Scanning Electron Microscopy (SEM). Results showed that the morphology and diameter of the fibers were affected by the electrospinning solution concentrationan and different weight ratio of PLLA/PCL. These electrospun PLLA-b-PCL fibrous membranes exhibited good flexibility and deformability. In comparison with the electrospun PLLA membrane, the electrospun fibrous membranes of PLLA-b-PCL demonstrated an enhanced elongation with still high tensile strength and Young's modulus to be beneficial for tissue engineering scaffolds.  相似文献   

2.
Blending poly(butylene succinate) (PBS) with polylactide (PLLA) has proven effective in improving heat resistance of PLLA fibers. Unfortunately, it remains challenging to maintain good spinnability for PLLA/PBS blends with high content of PBS with which further improved heat resistance could be anticipated. In this study, reactive melt-extrusion was devised to in-situ generate PLLA-PBS copolymers by introducing zinc acetate as a transesterification catalyst into PLLA/PBS blends. The compatibility between the PLLA and PBS phases was greatly improved by the formation of PLLA-PBS copolymers, resulting in excellent melt-spinnability even for the PLLA/PBS blends with high PBS content up to 20 wt%. In addition, an increase in crystallinity of PLLA was achieved in PLLA/PBS blend fibers, thanks to the enhanced compatibility. More importantly, the presence of PBS nuclei retarded the molecular orientation of the amorphous PLLA phase, consistent with the effective results from the relaxation heat-setting treatment. These led to an exceptionally improved heat resistance of the PLLA/PBS blend fibers. As an encouraging result, the boiling water shrinkage was significantly reduced from ca. 20% for neat PLLA fibers to 3.7% for the PLLA/PBS blend fibers with 20 wt% PBS content. These findings may open up a facile and effective route to develop PLLA/PBS blend fibers showing sound spinnability, greatly improved heat resistance and softness.  相似文献   

3.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

4.
Medicated‐fibers have been obtained through electrospinning after rifampin was dissolved in poly (lactic acid)/chloroform solution. The relationship between polymer variables [such as concentration, molecular weight (Mw), and introducing hydrophilic block] and drug release from the electrospun fibers is disclosed. The results show that polymeric concentration and Mw are crucial for producing the medicated fibers, which influence not only the morphology of the medicated‐fiber but also drug release rate from fiber. At the same Mw, the drug release rate decreases with the increase of spinning concentration. At two different Mw blends, drug release behaviors change. When the low Mw content is in a dominant position, drug release rate depends largely on mixing ratio of two Mw contents; on the other hand, drug release rate is also dependent on concentration of spinning fluid. In addition, the block copolymer [poly‐L ‐lactic acid (PLLA)‐polyethylene glycol‐PLLA] shows faster release rate as compared to homopolymer (PLLA). © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

5.
Aligned poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL)/hydroxyapaite (HA) composite fibrous membranes were fabricated by electrospinning. Their morphology, thermal stability, mechanical properties, hydrophilic properties and biocompatibility were investigated. The electrospun fibers are highly aligned and the HA are oriented along the fiber axis. When HA are incorporated, the PLLA/PCL/HA composite fibers become thinner due to the increased conductivity. In addition, the aligned HA reinforce the electrospun fibrous membranes. The larger porosity and higher hydrophilic properties induced by HA in the electrospun fibers have improved the degradation of the PLLA/PCL/HA fibrous membranes which have no toxic effect on proliferation of adipose-derived stem cells.  相似文献   

6.
The micelle formation of a series of amphiphilic block copolymers in aqueous and NaCl solutions was studied by a fluorescent probe technique using pyrene as a "model drug". These copolymers were synthesized from poly (ethylene glycol) (PEG) and l-lactide by a new calcium ammoniate catalyst. They had fixed PEG block lengths (44, 104 or 113 ethylene oxide units) and various poly(l-lactide) (PLLA) block lengths (15–280 lactide units). The critical micelle concentration (cmc) was found to decrease with increasing PLLA content. The distinct dissimilarity of the cmc values of diblock and triblock copolymers based on the same block length of PEG provided evidence for the different configurations of their micelles. It was also observed that the introduction of NaCl salt significantly contributed to a decrease in the cmcs of the copolymers with short PEG and PLLA blocks, while it had less influence on the cmcs of copolymers with long PEG or PLLA blocks. The dependence of partition coefficients ranging from 0.2×105 to 1.9×105 on the PLLA content in the copolymer and on the micelle configuration was also discussed. The contribution of NaCl salt to increasing the partition of pyrene into a micellar phase was observed.  相似文献   

7.
Triblock copolymers made up of poly(ethylene oxide) (PEO) and polylactide (PLA) were synthesized and converted to fibers by the electrospinning process. A two‐step in situ‐synthesis in bulk was applied to extend PLA‐PEO‐PLA triblock copolymers with relatively short block length and low molecular weight in order to obtain electrospinnable materials. DL‐lactide was polymerized to the hydroxyl chain ends of PEO via the stannous octoate route. Hexamethylene diisocyanate (HDI) was added as chain extender in the second step, leading to poly(ether‐ester‐urethane) multiblock copolymers. The materials were electrospun from solutions in chloroform. Different concentrations and voltages were analyzed. The ether and ester blocks were varied in their block length and their effects on the fiber morphology was studied. Variations in the electrical conductivity of the chloroform solutions were investigated by adding triethyl benzyl ammonium chloride (TEBAC) in different amounts. Finally, with high quality electrospun PLA‐PEO‐PEO triblock copolymer fibers mechanical cutting was possible. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The syntheses of {‐poly(L ‐lactide) (PLLA)‐b‐polyisobutylene (PIB)‐}n multiblock copolymers were accomplished for the first time by chain extension of PLLA‐b‐PIB‐b‐PLLA triblock copolymers. Well‐defined PLLA‐b‐PIB‐b‐PLLA triblock copolymers with predictable Mns, low PDIs (1.10–1.18) and excellent blocking efficiencies were prepared by anionic ring‐opening polymerizations of L ‐lactide initiated with hydroxyallyl telechelic PIB (HO‐Allyl‐PIB‐Allyl‐OH) in toluene at 110 °C. The triblock copolymers were successfully chain extended with 4,4′‐methylenebis(phenylisocyanate) (MDI) to obtain the multiblock copolymers with good gravimetric yields of ~86 to 96%. The chain‐extended polymers were soluble in a range of common organic solvents. The block copolymers showed two glass transition temperatures in differential scanning calorimetric analysis for the PIB and PLLA blocks indicating microphase separation, which was supported by atomic force microscopy images. The as‐synthesized compression molded multiblock copolymers exhibited tensile strengths in the range of 8–24 MPa with elongations at break in the range of 2.5–400%. The static and dynamic mechanical properties showed a strong dependence on the relative PLLA content in the copolymer. The dynamic mechanical analysis also indicated microphase separation at higher PLLA compositions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3490–3505, 2009  相似文献   

9.
Blends of bacterial poly((R)-3-hydroxybutyrate) (PHB) and poly(l-lactic acid) (PLLA) synthesized by polycondensation of l-lactic acid or by ring-opening polymerization of l-lactide were studied. Miscibility was investigated through both conventional differential scanning calorimetry (DSC) and temperature-modulated DSC (TMDSC). PHB and low-molar mass PLLA were miscible in a whole concentration range, and a single glass transition temperature was observed. On the other hand, PHB/high-molar mass PLLA mixtures phase separate, giving rise to two glass transition temperatures corresponding to PHB and PLLA. A treatment of blends at 190 °C leads to formation of block/multiblock/random copolymers, and blends become miscible.  相似文献   

10.
This paper reports on the interfacial behaviour of block and graft copolymers used as compatibilizers in immiscible polymer blends. A limited residence time of the copolymer at the interface has been shown in both reactive blending and blend compatibilization by preformed copolymers. Polystyrene (PS)/polyamide6 (PA6), polyphenylene oxide (PPO)/PA6 and polymethylmethacrylate (PMMA)/PA6 blends have been reactively compatibilized by a styrene-maleic anhydride copolymer SMA. The extent of miscibility of SMA with PS, PPO and PMMA is a key criterion for the stability of the graft copolymer at the interface. For the first 10 to 15 minutes of mixing, the in situ formed copolymer is able to decrease the particle size of the dispersed phase and to prevent it from coalescencing. However, upon increasing mixing time, the copolymer leaves the interface which results in phase coalescence. In PS/LDPE blends compatibilized by preformed PS/hydrogenated polybutadiene (hPB) block copolymers, a tapered diblock stabilizes efficiently a co-continuous two-phase morphology, in contrast to a triblock copolymer that was unable to prevent phase coarsening during annealing at 180°C for 150 minutes.  相似文献   

11.
Once around the block : Incorporation of a rigid hydrogen‐bonding benzamide unit, placed at the interface between two polymer blocks, in poly(ethylene glycol) (PEG)–(thio)urea–poly(L ‐lactide) (PLLA) block copolymers transforms the morphology of the block copolymers, from spherical micelles, as formed by PEG‐PLLA diblock copolymers, into nanotubes in solution.

  相似文献   


12.
High molecular weight poly(L-lactic acid)-poly(ethylene glycol)-poly(L-lactic acid) (PLLA–PEG–PLLA; PLGL) triblock copolymers with various lengths of the PLLA blocks were synthesized by ringopening polymerization of L-lactide. The amorphous and crystalline PLLA and PLGL films were prepared by hot pressing with different temperature treatments. PLLA and PEG blocks exhibited good miscibility in the amorphous PLGL samples, while phase separation occurred in the crystalline ones. The flexible PEG blocks not only accelerated the crystallization rate of PLLA but also greatly improve its flexibility. The crystallization time of PLGL copolymers shorten to less than 5 min and copolymers showed much better flexibility than neat PLLA, the maximum fracture strain reached about 600% for amorphous sample. The processing time of PLLA was greatly shortened and the brittleness of material was improved.  相似文献   

13.
The crystallization behaviors and morphology of asymmetric crystalline–crystalline diblock copolymers poly(ethylene oxide‐lactide) (PEO‐b‐PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5b‐PLLA16 can be crystallized, which was confirmed by WAXD, while PEO block in PEO5b‐PLLA30 is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer. Comparing with the crystallization and morphology of PLLA homopolymer and differences between the two copolymers, we studied the influence of PEO block and microphase separation on the crystallization and morphology of PLLA block. The boundary temperature (Tb) was observed, which distinguishes the crystallization into high‐ and low‐temperature ranges, the growth rate and morphology were quite different between the ranges. Crystalline morphologies including banded spherulite, dendritic crystal, and dense branching in PEO5b‐PLLA16 copolymer were formed. The typical morphology of dendritic crystals including two different sectors were observed in PEO5b‐PLLA30 copolymer, which can be explained by secondary nucleation, chain growth direction, and phase separation between the two blocks during the crystallization process. Lozenge‐shaped crystals of PLLA with screw dislocation were also observed employing AFM, but the crystalline morphology of PEO block was not observed using microscopy techniques because of its small size. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1400–1411, 2008  相似文献   

14.
PSt-b-PEO增容PA6/PS共混体系的研究   总被引:1,自引:0,他引:1  
采用动态力学方法(DMA),形态学方法(SEM),研究了PSt b PEO存在下尼龙6(PA6)/聚苯乙烯(PS)共混体系的相容性.研究表明,PA6和PS的简单共混体系,分散相相畴尺寸大,相界面清晰,断裂面光滑,呈脆性断裂,相容性极差,属不相容体系.而加入少量PSt b PEO后分散相尺寸变小,界面层变厚,界面粘结力增强,表现出韧性特征.  相似文献   

15.

Multi‐block copolymers of PLLA and PCL were prepared by a coupling reaction between PLLA and PCL prepolymers with –NCO end groups. FTIR proved that the products were PLLA‐PCL copolymers. The weight‐average molecular weight of the copolymers was up to 180,000 at a composition of 60% PLLA and 40% PCL. The degradation properties of PLLA and PLLA‐PCL copolymers were studied by a soil burial test and a hydrolysis test in a phosphate‐buffer solution. The degradation rate was estimated by the mass loss, molecular weight reduction, pH value changes and swelling index; the degradation rates of the copolymers were a function of the composition of PLLA and PCL. Increasing PCL content in the copolymers resulted in lower degradation rate.  相似文献   

16.
The nucleation and crystallization of two types of strongly segregated poly(lactide)-block-polyethylene diblock copolymers with an approximate 50/50 composition has been investigated. One material contains an amorphous PLDA block (PLDA-b-PE) and the other contains a semicrystalline PLLA block (PLLA-b-PE). The overall isothermal crystallization rate of the PLLA block was slowed down as compared to homo-PLLA by the covalently bonded PE chains that were molten at the PLLA crystallization temperatures. This crystallization rate depression of the PLLA block produces a coincident crystallization process when PLLA-b-PE is cooled down from the melt at rates larger than 2 °C/min. The overall crystallization rate of the PE block is faster when it is covalently bonded to previously crystallized PLLA than when it is attached to a rubbery PDLA block, this results from a nucleation effect of PLLA on the PE block. Polarized Light Optical Microscopy (PLOM) confirmed the confined nature of the crystallization process within lamellar microdomains for both diblock copolymers, since neither PLLA nor PE are capable of breaking out and spherulites can not be formed.  相似文献   

17.
In this work, aligned and molecularly oriented bone‐like PLLA semihollow fiber yarns were manufactured continuously from an optimized homogeneous polymer‐solvent‐nonsolvent system [PLLA, CH2Cl2, and dimethyl formamide (DMF)] by a single capillary electrospinning via self‐bundling technique. Here, it should be emphasized that the self‐bundling electrospinning technique, a very facile electrospinning technique with a grounded needle (which is to induce the self‐bundling of polymer nanofibers at the beginning of electrospinning process), is used for the alignment and molecular orientation of the polymer fiber, and the take‐up speed of the rotating drum for the electrospun fiber yarn collection is very low (0.5 m/s). PLLA can be dissolved in DMF and CH2Cl2 mixed solvent with different ratios. By varying the ratios of mixed solvent system, PLLA electrospun semihollow fiber with the porous inner structure and compact shell wall could be formed, the thickness of the shell and the size of inner pores could be adjusted. The results of polarized FTIR and wide angle X‐ray diffraction investigations verified that as‐prepared PLLA semihollow fiber yarns were well‐aligned and molecularly oriented. Both the formation mechanism of semihollow fibers with core‐shell structure and the orientation mechanism of polymer chains within the polymer fibers were all discussed. The as‐prepared self‐bundling electrospun PLLA fiber yarns possessed enhanced mechanical performance compared with the corresponding conventional electrospun PLLA fibrous nonwoven membranes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1118–1125, 2010  相似文献   

18.
杨玉良  邱枫  唐萍  张红东 《化学进展》2006,18(4):362-381
高分子共混物的混合熵很小导致其多为热力学不相容体系而发生相分离,形成特定的时空图样。本文根据多年来我们自己的研究工作并结合实例,基于时间分辨的Ginzberg-Landau 方法研究高分子复杂体系相分离动力学及图样选择,重点介绍剪切外场下高分子共混物及嵌段高分子的相分离,耦合化学反应的相分离,在弯曲曲面特别是球面上的相分离,以及TDGL与密度泛函理论的有机结合即动态自洽场理论在具有不同链拓朴结构的嵌段高分子体系中研究相分离动力学。  相似文献   

19.
The compatibilization and impact modification of blends of a relatively new engineering plastic polyamide 4.6 (PA 4.6) and a poly(aryl ether sulfone) (PSU) are investigated. PSU-b-PA6 block copolymers, which can be easily synthesized by ring opening polymerization of ϵ-caprolactam in the presence of a commercial PSU, were found to be very efficient emulsifiers for these incompatible blends. Small amounts (1–4%) of copolymer are sufficient to significantly reduce the particle size and to improve the tensile and impact properties. Combinations of the copolymer and an impact modifier (ethylene-propylene rubber grafted with maleic anhydride) are synergistic and high impact PSU/PA 4.6 alloys are obtained in that way.  相似文献   

20.
This study reports the structural transition of electrospun poly(ε‐caprolactone) (PCL)/poly[(propylmethacryl‐heptaisobutyl‐polyhedral oligomeric silsesquioxane)‐co‐(methyl meth­acrylate)] (POSS‐MMA) blends, from PCL‐rich fibers, to bicontinuous PCL core/POSS‐MMA shell fibers, to POSS‐MMA‐rich fibers with a discontinuous PCL inner phase. A ternary phase diagram depicting the electrospinnability of PCL/POSS‐MMA solutions is constructed by evaluating the morphological features of fibers electrospun from solutions with various concentrations and PCL/POSS‐MMA blend ratios. X‐ray diffraction, Raman spectroscopy, and differential scanning calorimetry are further used to characterize the electrospun PCL/POSS‐MMA hybrid fibers. These physicochemical characterization results are thoroughly discussed to understand the internal structures of the hybrid fibers, which are directly correlated to the phase separation behavior of the electrospun solutions. The current study provides further insight into the complex phase behavior of POSS‐copolymer‐based systems, which hold great potential for a broad spectrum of biomedical applications.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号