共查询到19条相似文献,搜索用时 62 毫秒
2.
冷热电联产系统具有潜在的能源、环境和经济效益,受到人们广泛关注。本文提出了一个由超临界压力CO_2布雷顿循环和热驱动跨临界喷射制冷循环组成的冷电联产系统,建立了系统的热力学能量和拥分析模型,获得了主要运行参数对系统性能的影响规律。当制冷剂为R1234ze时,系统最高热效率0.60,■效率0.51。■损最大的四个部件依次是回热器、喷射器、压缩机和透平,而喷射器、冷凝器和蒸发器■效率较低。研究表明增大透平入口压力和减小透平出口压力均可增大系统冷电输出和提高热、■效率;循环泵出口压力对冷量和耗功产生共同影响,系统存在最优循环泵出口压力。 相似文献
3.
新一代核能布雷顿闭式循环热力学分析研究 总被引:1,自引:2,他引:1
核能利用是20世纪最激动人心的科学成就之一。核能和平利用的重点在核能发电,至今核电站反应堆多为低温水冷堆,采用水或重水作为冷却剂和慢化剂,堆出口载热工质温度较低(280“C~340“q,因而多应用常规的Rankine蒸汽热力循环,热转功的效率较低(28%~33%)。90年代以来,随着工业和航空燃气轮机技术长足进步和高温核反应堆的进展,核能布雷顿闭式循环(NEBCC)展现出提高性能的潜力和发展前景,受到普遍关注。近期提出的模块化高温气冷堆氦气轮机(MHR--GT)[‘-‘]就是应用NEBCC的典型… 相似文献
4.
5.
《工程热物理学报》2021,42(10):2544-2552
超临界二氧化碳(SCO_2)布雷顿循环发电系统与传统火力发电系统相比,具有系统尺寸小、循环效率高、工质易获取等优势。本文首先采用Aspen HYSYS与Aspen Plus软件分别建立了三种循环模型:简单循环、再压缩循环和分流再压缩循环;并使用三种物性方法对每种循环进行了模拟;对比实验室的数据,研究了不同物性方法的模拟精确度,数据表明Aspen Plus软件下的REFPROP物性计算方法精确度较高。然后在不同的工况参数下,使用该物性方法计算对比了三种循环在相同工况下的循环效率,结果证实:为获得高效率,回热尤为重要。最后,以再压缩循环模型为基础,在不同的回热条件下,研究了循环中五个主要参数对循环效率的影响。本文结论可为SCO_2的再压缩循环模型设计提供参考。 相似文献
6.
透平是超临界二氧化碳(S-CO2)布雷顿循环的核心部件之一。通常,小流量的循环常采用向心透平。透平的效率和循环的设计参数密切相关。在关于S-CO2循环的研究中,透平效率通常设置为定值。目前并没有关于采用透平效率预测对于S-CO2循环,性能影响的研究。本篇文章提出了采用一维向心透平效率的S-CO2循环再压缩循环模型。并在不同的循环参数下,对采用一维透平效率和固定透平效率的S-CO2循环的热力学性能进行对比。结果显示当循环参数改变时,可以采用合适的固定透平效率。然而,当热源流量变化时,探究变工况情况下的透平效率相当重要。 相似文献
7.
对于S-CO2燃煤发电系统,系统复杂难以横向比较,拆分法通过对循环流量分配,能够梳理循环回热过程并进行循环间的比较,应用循环拆分法有助于对复杂燃煤发电系统的性能进行分析。本文以再压缩循环(RC)为例,构建了集成冷却器热量回收(CHR)和烟气冷却器法(FGC)的S-CO2燃煤发电系统(RC+LFGC+CHR),论证了拆分法在分析燃煤发电系统中的优势。当主气参数为620?C/28 MPa时,应用拆分法分析,RC+FGC+CHR可等效为在热效率49.21%的RC基础上,叠加热效率为57.49%的子循环(SSC+LFGC+CHR),故RC+FGC+CHR效率(49.80%)高于RC(49.21%)。 相似文献
8.
本文研究了以超临界CO2布雷登循环为原动机的热电联供系统,对系统主要运行参数进行了分析,得到运行参数对于系统热力学性能和经济性能的影响规律。同时,以一次能源利用率和单位输出成本作为目标函数,采用多目标遗传算法对系统进行了优化;在优化结果的基础上,通过TOPSIS法决策出最优解,并与单目标最优解进行对比。结果表明,透平进口温度、透平进口压力和压缩机进口温度的增大有利于系统效率的提高;作为代价,成本也相应增加。在热电比0~4范围内,尽可能增大热电比能够最大程度上降低系统的单位输出成本,提高能源的利用率。 相似文献
9.
自然循环特性是铅基反应堆一回路的关键运行特性,对反应堆的非能动应急余热排出具有重要的影响,自然循环特性与余热排出能力是反应堆热工水力研究的重要内容。采用多孔介质方法,建立了CiADS铅基堆1/4三维计算模型,使用FLUENT程序对额定工况与低功率工况进行稳态计算。为了研究全厂断电事故下的余热排出过程,从热工水力的等效原则出发,尝试建立二维等效模型以提高瞬态计算效率。结果表明,CiADS铅基堆具备低功率自然循环运行能力和一定的事故容错能力;二维等效模型与三维模型计算结果吻合较好,可用于瞬态下的简化分析;CiADS铅基堆的非能动余热排出系统能够较好地应对全厂断电事故,反应堆具有良好的固有安全性。 相似文献
10.
预热型超临界二氧化碳(Supercritical CO2,简称S-CO2)布雷顿循环可进一步利用高温热源余热,在燃气轮机余热回收应用领域中具有较高的发展潜力。本文以存在有限温差传热、不可逆压缩、不可逆膨胀等不可逆因素的预热型S-CO2布雷顿循环为研究对象,考虑生态学函数为目标,首先分析了工质质量流率、压比、透平效率和压缩机效率的影响,然后在总热导率一定的条件下,以生态学函数最大目标分别对压比、质量流率、预热器、加热器、冷却器和回热器热导率分配比进行优化。结果表明:在质量流率较小时,可通过增大压比、分流系数、加热器热导率分配比的方式来提高生态学函数;在质量流率较大时,则需要适当减小压比、分流系数,增大预热器热导率分配比来提高生态学函数;经优化,循环生态学函数最大可提高150.98%。 相似文献
11.
12.
13.
A power-water cogeneration system based on a supercritical carbon dioxide Brayton cycle (SCBC) and reverse osmosis (RO) unit is proposed and analyzed in this paper to recover the waste heat of a gas turbine. In order to improve the system performance, the power generated by SCBC is used to drive the RO unit and the waste heat of SCBC is used to preheat the feed seawater of the RO unit. In particular, a dual-stage cooler is employed to elevate the preheating temperature as much as possible. The proposed system is simulated and discussed based on the detailed thermodynamic models. According to the results of parametric analysis, the exergy efficiency of SCBC first increases and then decreases as the turbine inlet temperature and split ratio increase. The performance of the RO unit is improved as the preheating temperature rises. Finally, an optimal exergy efficiency of 52.88% can be achieved according to the single-objective optimization results. 相似文献
14.
(1) Background: the shipping industry forced ships to adopt new energy-saving technologies to improve energy efficiency. With the timing modulation for the marine low-speed diesel engine S-CO2 Brayton cycle, the waste heat recovery system is optimized to improve fuel economy. (2) Methods: with the 6EX340EF marine low-speed diesel engine established in AVL Cruise M and verified by the bench test data, the model of the S-CO2 Recompression Brayton Cycle (SCRBC) system for the low-speed engine flue gas waste heat recovery was developed in EBSILON, and verified by SANDIA experimental data. On this basis, the effects of injection timing and valve timing parameters on the comprehensive performance of the main engine and the waste heat recovery system were investigated. By optimizing the timing modulation parameters through multi-objective genetic algorithm (MOGA) and evaluating the flue gas waste heat recovery from the perspective of thermodynamic performance and emission reduction, the research on the performance modulation method of the S-CO2 Brayton Cycle for flue gas waste heat in marine low-speed engines has been completed. (3) Results: the SCRBC with waste heat modulation will further increase the total power and efficiency, which in turn brings about a reduction in the fuel consumption rate. The efficiency of the SCRBC system with the addition of waste heat modulation increases by 2.28%, 1.04% and 2.07% at 50%, 75% and 100%, respectively. After adding the residual heat modulation, the maximum annual CO2 emission reduction of 748.51 × 103 kg·a−1 occurred at 50% load; with the exergy analysis, the cooler has the largest system exergy loss of 165 kW, with the exergy loss efficiency of 2.06% under 100% load. (4) Conclusions: the research on the performance modulation method of S-CO2 Brayton cycle for flue gas waste heat in the marine low-speed engine has been completed, which further improves the efficiency of the system and can be extended to other engines. 相似文献
15.
16.
本文基于Aspen plus软件对燃用低热值煤气的燃气蒸汽联合循环系统进行了模拟仿真。在该仿真平台上对系统设计工况进行了计算验证。在设计工况下,燃气透平进口温度为1000~1050℃,模拟计算结果为1016.2℃。燃气透平出口温度设计参数为517.2℃,模拟结果为519.2℃。结果表明仿真模型能够准确模拟系统稳态情况的各种工况。本文还运用矩阵模式热经济学的方法对系统设计工况下的(?)流成本进行了计算分析,对系统进行了技术经济评价。燃气轮机和蒸汽轮机电能耗费的能量成本分别为22.2,24.06和16.64$·GJ-1。 相似文献
17.
In this paper, a recompression S-CO2 Brayton cycle model that considers the finite-temperature difference heat transfer between the heat source and the working fluid, irreversible compression, expansion, and other irreversibility is established. First, the ecological function is analyzed. Then the mass flow rate, pressure ratio, diversion coefficient, and the heat conductance distribution ratios (HCDRs) of four heat exchangers (HEXs) are chosen as variables to optimize cycle performance, and the problem of long optimization time is solved by building a neural network prediction model. The results show that when the mass flow rate is small, the pressure ratio, the HCDRs of heater, and high temperature regenerator are the main influencing factors of the ecological function; when the mass flow rate is large, the influences of the re-compressor, the HCDRs of low temperature regenerator, and cooler on the ecological function increase; reasonable adjustment of the HCDRs of four HEXs can make the cycle performance better, but mass flow rate plays a more important role; the ecological function can be increased by 12.13%, 31.52%, 52.2%, 93.26%, and 96.99% compared with the initial design point after one-, two-, three-, four- and five-time optimizations, respectively. 相似文献
18.
Based on finite time thermodynamics, an irreversible combined thermal Brownian heat engine model is established in this paper. The model consists of two thermal Brownian heat engines which are operating in tandem with thermal contact with three heat reservoirs. The rates of heat transfer are finite between the heat engine and the reservoir. Considering the heat leakage and the losses caused by kinetic energy change of particles, the formulas of steady current, power output and efficiency are derived. The power output and efficiency of combined heat engine are smaller than that of single heat engine operating between reservoirs with same temperatures. When the potential filed is free from external load, the effects of asymmetry of the potential, barrier height and heat leakage on the performance of the combined heat engine are analyzed. When the potential field is free from external load, the effects of basic design parameters on the performance of the combined heat engine are analyzed. The optimal power and efficiency are obtained by optimizing the barrier heights of two heat engines. The optimal working regions are obtained. There is optimal temperature ratio which maximize the overall power output or efficiency. When the potential filed is subjected to external load, effect of external load is analyzed. The steady current decreases versus external load; the power output and efficiency are monotonically increasing versus external load. 相似文献
19.
This study investigates the hybridization scenario of a single-flash geothermal power plant with a biomass-driven sCO2-steam Rankine combined cycle, where a solid local biomass source, olive residue, is used as a fuel. The hybrid power plant is modeled using the simulation software EBSILON®Professional. A topping sCO2 cycle is chosen due to its potential for flexible electricity generation. A synergy between the topping sCO2 and bottoming steam Rankine cycles is achieved by a good temperature match between the coupling heat exchanger, where the waste heat from the topping cycle is utilized in the bottoming cycle. The high-temperature heat addition problem, common in sCO2 cycles, is also eliminated by utilizing the heat in the flue gas in the bottoming cycle. Combined cycle thermal efficiency and a biomass-to-electricity conversion efficiency of 24.9% and 22.4% are achieved, respectively. The corresponding fuel consumption of the hybridized plant is found to be 2.2 kg/s. 相似文献