首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
铜基催化剂的价态组成与制备方法、还原温度有关,也是决定其催化性能的关键因素.本文对比研究Cu-Zn/SiO2和Cu/SiO2催化剂前驱体在不同还原温度下的价态组成及其醋酸甲酯加氢性能.采用同步辐射X射线吸收谱原位表征催化剂前驱体的Cu K边的X射线近边吸收谱(XANES),通过线性组合分析方法(LCF)拟合XANES吸收谱得到了催化剂前驱体在不同还原温度下氧化态(Cu2+、Cu+)和金属态(Cu0)的组分含量.结果表明:(1)采用蒸氨法添加Zn制备的Cu-Zn/SiO2催化剂前驱体铜组分还原度高;(2)催化剂前驱体在还原过程中Cu+主要存在于低温还原阶段(<250℃),且Cu0+Cu+含量较低(≤ 40%);(3)金属态铜是醋酸酯加氢反应的活性中心.  相似文献   

2.
铜基催化剂可被广泛应用于CO2加氢制甲醇,其催化活性高度依赖载体.本文通过St?ber法合成了SiO2纳米微球,将其作为载体制备了Cu-Zn O@Si O2催化剂;将该催化剂应用于CO2加氢制甲醇,并与常规共沉淀法制备的Cu-Zn O催化剂进行了对比.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)和二氧化碳程序升温脱附(CO2-TPD)等手段对催化剂进行了表征.结果表明,Cu-Zn O@Si O2催化剂具有更高的Cu分散性和CO2吸附能力,Si O2的加入提高了催化剂表面Cu+/Cu0的比例,从而影响了催化性能.研究发现,在H2/CO2摩尔比为3,230℃,2.0 MPa和气体体积空速为3600 m L·g  相似文献   

3.
以Ti3AlC2和CuCl2·2H2O为前驱体,成功制备了Cu0纳米颗粒修饰和Cu2+自插层的手风琴状二维催化剂Cu0/Cu2+-Ti3C2Tx,用于电催化还原CO2。对材料的电化学性能进行了测试,结果表明,在CO2饱和的0.5 mol/L KHCO3电解液中,与原始的Ti3AlC2相比,Cu2+/Cu0-Ti3C2Tx催化剂电催化CO2转化为乙烯(C2H4)的起始电位从-0.65 V(vsRHE)降至-0.01 V(vs RHE),最大电流密度从0.19 mA/cm2增至2.50 mA/cm2  相似文献   

4.
采用完全液相法在不同热处理时间下制备了CuZnAl催化剂,利用X射线光电子能谱(XPS)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、NH3吸附-脱附(NH3-TPD-MS)和N2物理吸附-脱附等方法对其结构进行了表征分析,并在浆态床反应器上对其催化合成气制C2+OH的性能进行了研究。研究发现,延长热处理时间增强了催化剂中Cu和Al物种之间的相互作用力,改变了其中Cu+的量,从而影响Cu+-Cu0活性位的协同作用。同时,热处理时间的延长减少了催化剂的表面酸量,增大了孔容和孔径;催化剂表面较少的弱酸位及较大孔容和孔径均有利于C2+OH的生成。热处理时间为7 h时所制备的CuZnAl催化剂表现出了优良的低碳醇合成催化活性,CO转化率和总醇中C2+OH的质量分数分别达到了38.1%和65.9%。  相似文献   

5.
通过向CuMgAl水滑石(CuLDH)催化剂中添加不同量的Ce,合成了一系列Ce改性的CuLDH-Cex催化剂。采用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等分析手段对催化剂的理化性质进行表征。结果表明,添加Ce会改变Cu-LDH催化剂的水滑石结构,适量的Ce会增大催化剂的比表面积,改善了Cu颗粒的分散度。同时,适量的Ce有利于增加催化剂表面强碱性位点的密度和氧空位的数量,促进了CO2的吸附和转化。Ce有利于调变催化剂表面的Cu+/Cu0比例,较高的Cu+/Cu0比例有利于甲醇的生成。当Ce/Cu比例为0.3时,在空速为9000 mL/(g·h),温度为240℃,压力为2.5 MPa的条件下,催化剂的CO2的转化率为7.5%,甲醇选择性为78.4%,甲醇的时空收率最高可达362.8 g/(kg·h)。通过原位红外光谱(in-situ DRIFTS)证明CuLDH-Ce0.3催...  相似文献   

6.
采用羟基铁离子柱撑钠化海泡石改性后, 以浸渍法制备了铜负载铁柱撑钠化海泡石Cu/Fe-NaPILCS催化剂, 作为比较以浸渍法制备了铁负载钠化海泡石(Fe-NaSep), 铜负载钠化海泡石(Cu-NaSep)和铜铁负载钠化海泡石(Cu/Fe-NaSep)催化剂. 并将它们应用于C3H6选择性催化还原NO的反应(C3H6-SCR). 通过X射线衍射仪(XRD)、TGA-DTG分析、N2-等温吸附/脱附、H2-程序升温还原(TPR)和X射线光电子能谱仪(XPS)等技术对样品进行表征. N2-等温吸附/脱附和TGA-DTG分析结果表明, Fe-NaPILCS的比表面积和孔体积较海泡石原矿具有较大的增加, 热稳定性也明显提高|XRD和XPS结果表明, 在Cu/Fe-NaPILCS催化剂上同时存在Fe3+/Fe2+和Cu2+/Cu不同氧化态的氧化物种, 在Cu和Fe之间存在电子迁移. H2-TPR结果表明, Cu/Fe-NaPILCS催化剂上存在大量的孤立铜离子物种(isolated Cu2+-ions, (Cu2+)i). Fe柱撑钠化海泡石负载的Cu/Fe-NaPILCS催化剂的催化活性明显优于未柱撑海泡石负载的Cu/Fe-NaSep催化剂, 这可能与Cu/Fe-NaPILCS具有较大的比表面积、孔体积和更优的氧化还原性能, 及其具有更多有利于C3H6-SCR反应的(Cu2+)i物种有关.  相似文献   

7.
采用共沉淀法制备Cu/Zn/Al前驱体,经甲酸处理后N2气氛焙烧得到Cu-ZnO-Al2O3催化剂(CZA)用于CO2加氢制甲醇反应。使用XRD、BET、TG-DSC、SEM、H2-TPR、N2O滴定、XPS-AES、CO2-TPD表征技术对催化剂的物相组成、结构性质以及Cu物种的比表面积、分散度以及价态分布进行分析和讨论。结果表明,甲酸处理调节了催化剂中Cu+与Cu0的比例,同时增加催化剂的中强碱性,并提高甲醇选择性。在W/F(H2/CO2=70/23)=10 g·h/mol、t=200℃、p=3 MPa反应条件下,使用HCOOH/Cu(物质的量比)=0.8甲酸处理获得的催化剂,CO2转化率6.7%,甲醇选择性达76.3%。  相似文献   

8.
CO2加H2合成甲醇Cu-Zn-O催化剂表面化学态研究   总被引:1,自引:0,他引:1  
应用XRD、ESR、URDS、XPS及XAES等手段研究了CO2加H2合成甲醇Cu-Zn-O催化剂在还原后和反应状态下的表面化学状态,结果表明,在还原及反应状态下,催化剂表面仅能检测到Cu0,而未发现稳定的Cu2+和Cu+存在;ZnO被部分还原产生低价锌Zn2-δ(0<δ<2).关联活性测试结果认为,Cu0/Zn(2-δ)+O构成CO2加H2合成甲醇反应的活性中心。  相似文献   

9.
前驱体物相转变对浆态床合成甲醇催化剂活性的影响   总被引:3,自引:0,他引:3  
采用并流共沉淀法, 通过考察老化温度, 研究CuO/ZnO/Al2O3催化剂前驱体晶相及组成的变化对浆态床催化合成甲醇的反应活性的影响. 结果表明, 前驱体的物相转变对浆态床合成甲醇活性影响显著, 单斜晶系锌孔雀石(Cu,Zn)2CO3(OH)2和斜方晶系绿铜锌矿(Cu,Zn)5(CO3)2(OH)6晶体是产生高活性催化剂的主要物相. 随着Cu2+/Zn2+进入Zn5(CO3)2(OH)6/Cu2CO3(OH)2晶格, 离子同晶取代量增加, 催化剂前驱体中形成了固定铜锌比的锌孔雀石和绿铜锌矿物相. 焙烧后催化剂比表面积增大, CuO-ZnO固溶体协同作用加强, 浆态床催化合成甲醇的活性提高.  相似文献   

10.
采用铜胺配合物(Cu2+-四乙烯五胺,Cu-TEPA)作为结构导向剂,通过一步水热法合成不同铜铝比(nCu/nAl)和硅铝比(nSi/nAl)的Cu-SSZ-13分子筛催化剂,研究其在贫燃条件下丙烯选择性催化还原NO(C3H6-SCR)的性能。当nCu/nAl=2、nSi/nAl=6时2.0Cu-SSZ-13(6)催化剂具有最好的低温脱硝活性,200℃时NO转化率超过80%,在250~300℃可实现100%脱硝效率和~100%N2选择性,同时具有较强的抗水、抗硫性能。为研究不同nCu/nAl和nSi/nAl对催化剂物理化学特性的影响,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、N2吸附-脱附测试、H2程序升温还原(H2-TPR)、氨气程序升温脱附(NH3-TPD)、紫外可见光谱(UV-Vis)等手段对样品进行表征。结果表明,2.0Cu-SSZ-13(6)具有最佳的脱硝性能,这是因为其具有最大的比表面积、最强的表面酸性和分布最多的孤立态Cu2+离子。Cu-SSZ-13上丰富的酸性位可以有效促进C3H6和NO的吸附和活化,SSZ-13分子筛八元环中孤立的Cu2+离子具有良好的氧化还原性能,是C3H6-SCR反应的主要活性位。随着nCu/nAl的增加,孤立的Cu2+离子会在分子筛表面迁移、集聚形成CuO物种,从而导致C3H6-SCR活性下降。  相似文献   

11.
采用蒸氨法制备的xGa-Cu/SiO_2催化剂可以同时产生Cu~0和Cu~+物种,加入Ga后催化剂的二甲醚水蒸气重整反应活性和选择性都有很大程度的提高,其中5Ga-Cu/SiO_2催化剂在380°C时的二甲醚转化率为99.8%,CO选择性为4.8%。通过透射电子显微镜(TEM),氢气-程序升温还原(H_2-TPR),N_2O滴定和X射线光电子能谱(XPS)结果发现,Ga与Cu物种之间的相互作用,一方面可以提高Cu物种的分散度,另一方面可以促进Cu~+的形成。通过改变Ga负载量可以调变Cu~+/(Cu~0+Cu~+)的比例,氢气的时空收率结果表明,Ga通过调变Cu~+/(Cu~0+Cu~+)影响催化活性,并且当Cu~+/(Cu~0+Cu~+)=0.5时,氢气时空收率达到最大值为5.02mol·g~(-1)·h~(-1)。程序升温表面反应(TPSR)结果表明,Ga通过促进水气变换反应提高反应产物CO_2选择性。  相似文献   

12.
采用先浸渍Ce后浸渍Cu的方法制备了活性炭(AC)负载CuCe催化剂,考察了焙烧温度对CuCe/AC催化剂表面结构及其催化甲醇气相氧化羰基化合成碳酸二甲酯(DMC)性能的影响,并采用XRD、XPS和H2-TPR等表征分析了活性组分含量和价态等性质。结果表明,催化剂中高价态的Cu~(2+)逐渐被还原为低价态的Cu~+和Cu~0,催化剂中发生Cu~(2+)→Cu~+→Cu~0的还原变化过程。催化剂经450℃焙烧处理后,催化剂中仍然存在一定量的Cu_2O晶相,表明Ce与Cu的相互作用抑制了部分Cu_2O的还原。当焙烧处理温度为300℃时,催化剂中的Cu~+含量达到最高,此时催化剂的活性达到最优,DMC的时空收率、选择性以及甲醇转化率分别为143.4mg/(g·h)、85.2%和4.1%。  相似文献   

13.
采用尿素水解法制备了Cu/SiO2催化剂, 探究其用于乙酸甲酯(MA)加氢制取乙醇的催化性能, 并通过N2物理吸附、X射线衍射(XRD)、程序升温还原(TPR)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等表征方法分析了催化剂的物理化学特性, 探究了铜负载量和还原温度等对催化剂结构的影响, 以及与催化活性之间的关系. 发现在铜负载量分别为10%、20%和30% (质量分数, w)的催化剂中, 铜负载量为20%的催化剂因具有较多且分散均匀的活性组分而表现出最佳的加氢效果. 接着在铜负载量为20%的催化剂上研究了还原温度(270, 350, 450 ℃)对催化性能的影响, 发现在350 ℃下还原的催化剂活性最高, 在最佳的反应条件下, 乙酸甲酯转化率达到97.8%, 乙醇选择性达到64.9% (理论最大值为66.6%), 主要归属于它具有较高的铜物种分散度, 最合适的Cu0/(Cu0+Cu+)摩尔比例, 同时实现了解离氢气和活化乙酸甲酯的功能.  相似文献   

14.
采用共沉淀法分别制备了不同F-T组分(Fe、Co、Ni)改性的KCuZrO_2催化剂,并用于催化CO加氢合成异丁醇。通过BET、XRD、TEM、XPS、H_2-TPR、CO-TPD以及in-situ DRIFTS对催化剂进行了表征。结果显示,F-T组分的加入促进了乙醇和丙醇的形成,但是对异丁醇选择性影响不同。结果表明,Fe促进了催化剂中各组分的分散,活性组分Cu在催化剂表面发生了富集,提高了H_2/CO活化吸附;另外,KFeCuZrO_2的催化剂表面含有较多的C_1物种,有利于乙醇和丙醇进一步发生β-加成反应得到异丁醇,而Co和Ni改性的催化剂上缺少足够的C_1物种,因此,异丁醇的选择性并未明显增加。Co的引入对催化剂结构以及Cu的分散影响不大,但是Co改性后催化剂性能有所下降,其原因是催化剂发生了失活;Ni添加后催化剂比表面积有所减小,且催化剂表面Cu/Zr物质的量比也降低到0.19,催化剂粒径增大,Cu-Zr之间相互作用减弱,异丁醇选择性降低。  相似文献   

15.
Cu/ZrO2 catalysts have demonstrated effective in hydrogenation of CO2 to methanol, during which the Cu-ZrO2 interface plays a key role. Thus, maximizing the number of Cu-ZrO2 interface active sites is an effective strategy to develop ideal catalysts. This can be achieved by controlling the active metal size and employing porous supports. Metal-organic frameworks (MOFs) are valid candidates because of their rich, open-framework structures and tunable compositions. UiO-66 is a rigid metal-organic skeleton material with excellent hydrothermal and chemical stability that comprises Zr as the metal center and terephthalic acid (H2BDC) as the organic ligand. Herein, porous UiO-66 was chosen as the ZrO2 precursor, which can confine Cu nanoparticles within its pores/defects. As a result, we constructed a Cu-ZrO2 nanocomposite catalyst with high activity for CO2 hydrogenation to methanol. Many active interfaces could form when the catalysts were calcined at a moderate temperature, and the active interface was optimized by adjusting the calcination temperature and active metal size. Furthermore, the Cu-ZrO2 interface remained after CO2 hydrogenation to methanol, as confirmed by transmission electron microscopy (TEM), demonstrating the stability of the active interface. The catalyst structure and hydrogenation activity were influenced by the content of the active component and the calcination temperature; therefore, these parameters were explored to obtain an optimized catalyst. At 280 ℃ and 4.5 MPa, the optimized CZ-0.5-400 catalyst gave the highest methanol turnover frequency (TOF) of 13.4 h-1 with a methanol space-time yield (STY) of 587.8 g·kg-1·h-1 (calculated per kilogram of catalyst, the same below), a CO2 conversion of 12.6%, and a methanol selectivity of 62.4%. In situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) of CO adsorption over the optimized catalyst revealed a predominant, unreducible Cu+ species that was also identified by X-ray photoelectron spectroscopy (XPS). The favorable activity observed was due to this abundant Cu+ species coming from the Cu+-ZrO2 interface that served as the methanol synthesis active center and acted as a bridge for transporting hydrogen from the active Cu species to ZrO2. In addition, the oxygen vacancies of ZrO2 promoted the adsorption and activation of CO2. These vacancies and Cu+ trapped in the ZrO2 lattice are the active sites for methanol synthesis from CO2 hydrogenation. The X-ray diffraction (XRD) patterns of the catalyst before and after reaction revealed the stability of its structure, which was further verified by time-on-stream (TOS) tests. Furthermore, in situ DRIFTS and temperature-programmed surface reaction-mass spectroscopy (TPSR-MS) revealed the reaction mechanism of CO2 hydrogenation to methanol, which followed an HCOO-intermediated pathway.  相似文献   

16.
采用固相反应法制备了具有尖晶石结构的LiMn_2O_4/TiO_2系列催化剂,探讨了TiO_2、Li/TiO_2、Mn/TiO_2、LiMn_2O_4及LiMn_2O_4/TiO_2等不同组成催化剂的甲烷氧化偶联反应性能,采用XRD、XPS、CO_2-TPD和H_2-TPR等表征方法对该系列催化剂进行了分析。结果表明,具有尖晶石结构的LiMn_2O_4化合物具有较高的甲烷氧化偶联催化活性,在775℃、0.1MPa、7200mL/(h·g),CH_4∶O_2(体积比)为2.5的条件下,甲烷转化率可达25.8%,C2选择性可达43.2%。TiO_2的存在不仅进一步提高了甲烷转化率和C2选择性,还有效抑制了甲烷完全氧化形成CO_2的过程。负载8%LiMn_2O_4的LiMn_2O_4/TiO_2催化剂性能达到最优,此时甲烷转化率达到31.6%,C2选择性为52.4%,CO_2选择性降低到26.3%。考察了不同焙烧温度对催化剂活性的影响,850℃为LiMn_2O_4/TiO_2催化剂的最佳焙烧温度。  相似文献   

17.
Cu/SiO_2 catalysts prepared by different methods have been investigated focusing on the influence of Cu~+on the catalytic performance.The composition,structure and copper valence state were characterized by means of BET,XRD,XPS,FTIR,N_2O-titration.It was found that the Cu/SiO_2 prepared by ammoniaevaporation(AE) method had much higher TOF value than that prepared by wetness-impregnation(WI)with the same THF selectivity.The higher TOF value was attributed to the coexistence of Cu~+ and Cu~0species in the activated AE-Cu/SiO_2.while only Cu° species existing in the activated Wl-Cu/SiO_2.Researches suggest that Cu~+ can adsorb and polarize the C=0 bond of DMM.It is concluded that Cu°could be the main active site and the synergistic effect between Cu~0 and Cu~+ could contribute to hydrogenation of DMM to THF.  相似文献   

18.
通过共沉淀法制备一系列铜锌催化剂,用于固定床上糠醛气相加氢制2-甲基呋喃的研究。采用X射线衍射仪(XRD)、N_2吸附-脱附、扫描电子显微镜(SEM)、H_2-程序升温还原(H_2-TPR)、NH_3-程序升温脱附(NH_3-TPD)表征,分析催化剂中Cu0和ZnO在催化反应中的作用。结果表明,Cu~0是糠醛加氢的活性中心,氧化锌的加入减小了催化剂晶粒粒径、增大了催化剂比表面积、利于催化剂还原和增加催化剂表面弱酸性位。当Cu/Zn物质的量比为1∶2时,Cu_1Zn_2催化剂具有适宜氧化还原活性中心及弱酸位数量,对2-甲基呋喃表现出较高的选择性。Cu_1Zn_2催化剂在常压、反应温度为200℃、氢醛物质的量比为4∶1、糠醛体积空速为0.3 h-1条件下,糠醛转化率100.0%,2-甲基呋喃选择性最高为93.6%。反应稳定运行200 h后,糠醛转化率仍为100.0%,2-甲基呋喃选择性为80.0%,糠醇选择性为11.4%。  相似文献   

19.
付阳  谢起贤  武琳晓  罗景山 《催化学报》2022,43(4):1066-1073
近年来,由于化石燃料不断消耗造成的二氧化碳气体过量排放,对人类生活环境造成越来越大的威胁.电催化二氧化碳还原反应是一种很有前景的解决方法,可回收废弃的二氧化碳并通过将其转化为可再生的燃料和化学品来最终实现碳循环.在各种还原产物中,多碳化学产物因其具有高能量密度和高商业价值而备受青睐.然而,由于涉及多个复杂的反应途径,设...  相似文献   

20.
用CaO作为改性助剂,采用并流共沉淀法制备了CuO∶ZnO∶ZrO_2为5∶4∶1(物质的量比),CaO添加量为0、1%、2%、4%、8%、16%(摩尔分数)的六组催化剂。用X射线衍射(XRD)、微商热重(TG-DTG)、傅里叶红外(FT-IR)、N2吸附脱附(BET)、X射线光电子能谱(XPS)、氢气程序升温还原(H_2-TPR)、CO_2程序升温脱附(CO_2-TPD)、NH_3程序升温脱附(NH_3-TPD)对催化剂进行了表征。用自制固定床评价了催化剂活性。结果表明,添加CaO后,催化剂路易斯酸性和表面碱性增强;催化剂母体中高温碳酸盐含量增加,热稳定性增强,CuO颗粒粒径变小,Cu-Zn协同作用增强,Cu比表面积增大,分散性变好。催化剂活性受到表面酸碱性、铜比表面积、Cu-Zn协同作用和铜分散性共同影响。当CaO为2%时,铜比表面积为79.3 m2/g、铜分散度为34.8%、CO_2转化率为24.55%、甲醇选择性为19.01%、甲醇收率为0.044 g/(gcat·h),催化剂活性最好。过量CaO占据催化剂孔道和覆盖表面活性位,使催化剂路易斯酸性和表面碱性过强,CuO与H_2有效接触减少,CO_2难以脱附,催化活性下降。因此,适量CaO(2%)添加可促进CO_2加氢反应合成甲醇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号