首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
在利用烟道余热喷雾蒸发脱硫废水时,烟道中的飞灰会与喷雾液滴发生碰撞,进而影响废水处理效率.本文利用大涡模拟(LES)和离散相模型(DPM),模拟脱硫废水喷入烟道的雾化过程及粒径分布,重点考察了烟道飞灰与喷雾液滴碰撞时烟道流场分布及液滴空间分布,分析了Stokes数和喷雾角对流场和空间分布的影响规律.研究结果表明,采用空气雾化喷嘴雾化333.33 L·h~(-1)的脱硫废水,喷雾液滴的粒径分布为20~250μm;无飞灰进入烟道时,Stokes小于1时喷雾液滴速度衰减极快,Stokes大于1时喷雾液滴速度衰减最慢,且喷雾角较大时衰减更快;含飞灰进入烟道时,由于动量交换,喷雾液滴速度衰减更快,且碰撞主要发生于速度衰减到35 m·s~(-1)后的位置.  相似文献   

2.
喷雾蒸发燃烧的研究对指导发动机燃烧系统设计具有重要意义。本文搭建了高速数字全息系统,在线测量乙醇喷雾火焰中液滴的粒径、三维位置、速度及蒸发率。对喷雾火焰中的液滴进行了统计分析,得到液滴粒径及三维空间分布。燃烧喷雾场液滴的平均粒径为68μm;非燃烧火焰测试区液滴数量多且较密集,燃烧火焰测试区液滴数量少且稀疏.追踪单液滴并处理得到湍流火焰中液滴的运动轨迹及速度。通过研究粒径的平方D2随停留时间ts的变化,测得液滴平均蒸发率为-3.343×10-7 m2/s.  相似文献   

3.
喷雾冷却中液滴冲击壁面的流动和换热   总被引:2,自引:0,他引:2  
高珊  曲伟  姚伟 《工程热物理学报》2007,28(Z1):221-224
喷雾冷却中液滴冲击壁面的流动和换热强弱可用铺展系数和冷却效能的大小来反映.本文利用Volume-of-Fluid(VOF)方法,对初始直径在50~150 μm,初始速度在1.0~10.0 m/s之间的单个液滴冲击恒温发热表面的情况进行了数值模拟.模拟结果表明,增加液滴的初始速度和直径会扩大液滴的铺展范围,即铺展系数增大;液滴的初始直径越小、速度越大,则其冷却效能越大,即冷却能力越强.定量结果对喷雾系统的设计具有重要意义.  相似文献   

4.
为了掌握设计的细水雾蒸发冷却器对发动机排气的喷雾降温性能,建立了喷雾降温试验台,用设计的屏蔽式气相测温装置和压力损失测量装置,准确测量了排气管内喷雾后的排气温度和压力损失。结果表明,细水雾蒸发冷却器向发动机排气内喷雾80 s,高温排气即可降至稳定温度,排气压力损失比喷雾前减小;雾化压力越大,喷雾流量越大,喷雾降温效果越好,压力损失越小;排气出口对应的液态水饱和温度可视为喷雾降温的极限温度。  相似文献   

5.
液滴撞击加热壁面传热实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
沈胜强  张洁珊  梁刚涛 《物理学报》2015,64(13):134704-134704
本文采用高速摄像仪对水滴和乙醇液滴撞击加热壁面后的蒸发过程进行了实验观测, 分析了液滴撞击加热壁面后的蒸发特性参数. 实验中, 两种液体初始温度均为20 ℃, 不锈钢壁面初始温度范围为68-126℃. 水滴初始直径为2.07 mm, 撞击壁面时Weber 数为2-44; 乙醇液滴初始直径为1.64 mm, Weber数为3-88. 结果表明, 液滴受到重力、表面张力及流动性的影响, 在蒸发过程的大部分时间内, 水滴高度持续降低而接触直径几乎不变; 蒸发后期, 液滴发生回缩, 水滴的接触直径、高度和接触角出现振荡现象. 乙醇液滴的接触角随时间的增加呈现先减小随后保持不变的趋势, 而接触直径和高度则持续减小, 直到液滴完全蒸发. 液滴蒸发总时长与液体物性和壁面温度有关, 随壁面温度的升高而减小, 与液滴撞击壁面时的Weber 数无关. 同时, 随着壁面温度的升高, 液滴显热部分占总换热量的比重增大, 显热部分能量不可忽略, 本文实验条件下得到水滴的平均热流密度为0.014-0.110 W·mm-2.  相似文献   

6.
为研究输油管线清管扫线时,油气旋流分离器的工作状况,建立油气旋流分离器模型,试验了进口气速、气量、环境温度、柴油含量(油气比)、雾化油滴直径对分离效率的影响以及汽油的动蒸发现象.试验表明,进口气体流速和气量越大,进口油雾直径越小,温度越高,分离效果就越差;分离器入口气速越大,温度越高,动蒸发量也随之增加.  相似文献   

7.
燃煤电厂利用锅炉尾部烟气余热对脱硫废水进行喷雾蒸发处理技术应用前景广阔,但此技术存在烟道积灰等问题,研究脱硫废水介稳区的影响因素,对于评估该技术对烟道和除尘器等设备的影响十分关键。因此,本文采用激光法研究了脱硫废水的主要成分(MgCl_2-CaCl_2-NaCl复合盐溶液和单种盐溶液)在去离子水中的溶解度及超溶解度等热力学特性,以及金属离子、搅拌速率、pH值和飞灰对脱硫废水主要成分的介稳区的影响。研究发现金属离子的存在使脱硫废水介稳区变宽,是造成烟道积灰的主要因素,废水烟气混合紊流度、弱酸性环境和飞灰的存在将使脱硫废水介稳区变窄,促进废水晶体析出,可减少烟道积灰。  相似文献   

8.
为了了解附壁液滴的蒸发特性,利用分子动力学方法对铜基底上氩液滴的蒸发过程进行了模拟。结果表明,随着蒸发过程的进行,液滴中的氩原子逐步扩散到周围真空环境中,并最终达到蒸发稳定状态。稳态蒸发时液滴近似为球冠状,在固-液界面存在一个密度较大的吸附层,在汽-液界面存在一个密度骤降的区域,60%的蒸发发生在三相接触线区域.温度越高,系统达到稳态所需时间越短,蒸发越快,固-液界面吸附层密度越小,接触角越小;同时,固-液之间的能量参数越大,接触角越小。  相似文献   

9.
本文研究了平行电场中超疏水热表面上氧化石墨烯纳米流体液滴的蒸发特性.利用可视化技术捕捉了液滴接触角、接触直径及瞬态相界面的变化.实验发现平行电场能够将液滴沿电势梯度方向拉伸成椭球状,并可以调控蒸发过程中液滴接触直径的变化过程及大小.当液滴接触直径收缩比减小至某一临界值后,将出现一种新的蒸发模式:接触角与接触直径均保持不...  相似文献   

10.
高温熔融液滴的破碎特性研究   总被引:2,自引:0,他引:2  
本文采用高速摄影和数字图像处理技术对高温熔融液滴与冷却水作用时的破碎现象进行了研究,用图像技术对高速摄影(1000 fps,512×512象素)照片进行处理,识别液滴破碎后所形成的碎片,并统计出碎片的数目及尺寸分布;还对液滴温度、冲击速度、水温等因素对液滴破碎过程的影响进行了实验研究和分析。研究结果表明,随着实验条件的改变,液滴破碎后的碎片有三种典型形态,冷却水温度对碎片形态有重要影响;碎片的当量直径符合累积高斯分布,分布曲线可用Sigmoid函数表示;冷却水温度越高,冲击高度越大,液滴温度越高,液滴的破碎过程进行得越彻底。  相似文献   

11.
已有研究表明,微纳表面结构能显著强化喷雾冷却性能,但是其强化换热机制尚需进一步深入研究。本文对不同表面温度下液滴在不同微纳复合结构表面的铺展和蒸发行为开展了实验研究。研究结果表明,与液滴在光滑表面的铺展和蒸发性能相比,微纳复合结构表面可以增强液滴的铺展和蒸发,进而提高喷雾冷却换热系数(Heat Transfer Coefficient,HTC)和临界热流密度(Critical Heat Flux,CHF);微米沟槽的宽度越大,蒸发越快;三角形斜交微米柱阵列表面铺展各向同性优于方柱正交阵列。  相似文献   

12.
太空中固体粒子比液体粒子对航天器危害性大,计算液滴相变时间和温度变化对评估粒子危害性有重要意义.本文建立了太空环境下液滴辐射相变模型,分析了三种相变凝固模型,估计了水滴蒸发量,考虑了太阳辐射对液滴温度变化的影响,分别计算了水和氧化铝液滴的温度变化.结果表明:液滴粒径越小液滴冷却速率越大,三种相变凝固模型的相变时间差别较小;水滴蒸发比例均大于10%,其蒸发量不可忽略;水滴受太阳周期性辐射时,其温度在50 K至266 K之间周期性振荡变化.  相似文献   

13.
本文以闪蒸蒸发机理的特殊性为出发点,基于过热液滴闪蒸所需热量由其内部过热能量提供这一理论基础,建立了全新的过热水滴闪蒸的现象学模型,使用MATLAB/Simulink进行求解,通过实验验证其有效性。经计算得出了闪蒸过程中液滴温度、直径、质量、蒸发速率和蒸发率的变化规律,并利用控制变量法,研究初始温度、闪蒸压力和液滴粒径对液滴温度变化、蒸发速率、蒸发率和闪蒸时间的影响,得出了具有代表性的结论。  相似文献   

14.
液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
何博  何浩波  丰松江  聂万胜 《物理学报》2012,61(14):148201-148201
凝胶推进剂虽然兼具有液体推进剂流量可控和固体推进剂长期可储存等优点, 但凝胶喷雾液滴蒸发燃烧问题却一直困扰着凝胶推进剂研制及燃烧室设计工作, 阻碍了凝胶推进剂实际工程应用.设计实现了凝胶单液滴蒸发燃烧实验系统, 通过某型有机凝胶偏二甲肼(UDMH)单液滴在四氧化二氮蒸气中的蒸发燃烧实验现象, 进一步深入分析了凝胶液滴蒸发燃烧机理.根据实验中凝胶单液滴在不同阶段的蒸发特性, 建立了有机凝胶喷雾液滴在胶凝剂膜形成、膨胀、破裂三个不同蒸发阶段的多组分蒸发模型, 采用初步选定的模型参数及物性参数对凝胶单液滴在高温气体环境中的蒸发全过程进行了仿真计算, 并与常规液体液滴的仿真结果进行了对比分析.结果表明,凝胶喷雾液滴表面胶凝剂含量在蒸发初期增加比较缓慢, 但在某临界时刻后的极短时间内迅速升高至形成胶凝剂膜的质量分数95%, 导致表面质量流率迅速下降至0,表面温度则快速上升至UDMH推进剂沸点.胶凝剂膜形成后, 液滴半径及表面UDMH蒸气质量分数出现了实验现象中凝胶液滴反复膨胀-破裂的震荡现象, 液滴表面温度维持在略高于沸点的某温度范围内,凝胶液滴内部的沸腾蒸发明显强于液体液滴表面稳态蒸发流率, 使得凝胶喷雾液滴生存时间小于常规液体液滴.  相似文献   

15.
水平降膜蒸发器是机械蒸汽再压缩结晶(MVRC)系统的关键设备,在MVRC系统中可以用来蒸发废水并从含盐废水中回收二次蒸汽能量。然而,喷洒在水平降膜蒸发器管外的含盐废水的物性参数与普通水明显不同,其传热流动特性也必然不同。本文建立了MVRC系统中水平降膜蒸发器的三维数值模型,用水和硫酸钠混合物模拟含盐废水。用VOF模型跟踪蒸发器水平管上的液气界面,研究了不同硫酸钠含量、热流密度、喷淋密度和喷淋温度对传热系数hθ的影响,并建立了无量纲关联式。结果表明:1)传热特性可分为三个区域;2)在热发展区域,局部传热系数随硫酸钠含量的增加而降低;3)局部传热系数随喷淋密度和喷淋温度的增加而增加,在热发展区域受热流密度的影响很小。  相似文献   

16.
T型微通道内溶胶液滴形成过程   总被引:1,自引:1,他引:0       下载免费PDF全文
以制备空心玻璃微球的前体溶胶和硅油为原料,采用实验观测和数值模拟的方法,对T型微通道内溶胶乳液形成过程进行研究。基于液滴的受力分析,建立了液滴形成过程的数学模型,探讨了液滴大小的变化规律。研究结果表明:对于给定的物料体系和T型微通道,通过改变两相流量可以有效地控制液滴尺寸;在相同的分散相流量条件下,增大连续相流量可以减小液滴尺寸,但连续相流量大到一定程度后,这种效果逐渐减弱;在给定的连续相流量条件下,分散相流量越大,液滴直径越大;利用数学模型计算出的液滴直径与实验值偏差在10%左右。根据模拟结果和摄像分析,液滴产生过程经历了静态长大和缩颈剥离两个主要阶段。  相似文献   

17.
基于在低温环境下使用空气雾化喷嘴进行喷雾结冰实验的实际需求,在喷嘴投入使用前,标定了日本雾的池内公司生产的BIMJ 7004型空气雾化喷嘴的喷雾特性,包括各工况下的压缩空气流量、水流量,喷雾锥角和液滴群中值体积直径(MVD),并重点探究了环境温度对MVD的影响。实验结果表明,喷嘴喷雾的MVD受喷嘴气路和水路入口压力的影响最大,且基本不受环境温度的影响,即在020℃的环境温度下,喷雾距离D=0.8 m时,喷雾中心线处的液滴蒸发对MVD的影响很小。  相似文献   

18.
为了解不同温度下有机玻璃(PMMA)表面蒸汽凝结相变、液滴生长以及传热的过程,对有机玻璃表面的液滴冷凝过程进行了可视化实验观测,将液滴的凝结形态、面积率、接触角及尺寸变化等参数进行了分析并绘制出变化曲线,发现蒸汽在有机玻璃表面凝结时可形成颗粒分明的珠状液滴,凝结时间越长液滴直径越大;底板温度越低,面积率越大,接触角越大。控制以上变量可以有效改善蒸汽凝结效果,有利于提高热量传递效率,为液滴相变(汽-液)特性和换热表面结霜除霜技术提供理论支持。  相似文献   

19.
为探究闪蒸喷雾冷却的微观机理, 设计并搭建了液滴悬挂式真空闪蒸实验装置, 利用可视化窗口探究Tween20 液滴闪蒸过程中的闪蒸特性及气泡生长机理. 液滴在快速降压过程中形态会经历气泡成核、气泡生长、伴随气泡生长、爆裂这四个阶段的变化, 并反复循环这一过程直至液滴稳定蒸发. 对于液滴温度的变化, 闪蒸室的终态压力起到了决定性的作用, 并且其终态温度随压力的升高明显上升. 同时通过液滴闪蒸过程形态图分析发现, 液滴在剧烈爆炸阶段其温度也发生明显下降; 在稳定蒸发阶段, 其温度也将开始稳定不变. 因此可知液滴的剧烈爆炸会带走其自身的大量热量. 而 Tween20 浓度对液滴温度的影响微乎其微, 但其会使液滴内气泡的初始成核时间发生明显滞后, 并抑制液滴内的气泡发生破裂.  相似文献   

20.
为准确描述汽轮机级内湿蒸汽凝结流动特性,采用双流体模型结合修正的均质成核和水滴生长模型,实现汽轮机初始成核级叶栅通道内非平衡凝结数值求解。通过焓损失系数与自由能理论进一步分析了进汽参数变化对汽轮机叶栅通道内湿蒸汽自发凝结流动的影响,结果表明:随着过热度的降低,非平衡凝结起始位置提前,非平衡凝结现象更剧烈,凝结产生的液相质量分数增加,热力学损失升高;进口湿度对水滴的生长和蒸发速率非常敏感,对凝结冲击位置有很大的影响;入口湿蒸汽液滴直径越大,阻碍相变的自由能壁垒越低,二次凝结现象越易发生,热力学损失越大,当湿度为0.01的液滴直径超过0.2μm时,均质成核的二次凝结现象逐渐发生;二次成核的临界水滴直径随着湿度的增加而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号