首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
By embedding a layer of self-assembled quantum dots into a field-effect structure, we are able to control the exciton charge in a single dot. We present the results of photoluminescence experiments as a function of both charge and magnetic field. The results demonstrate a hierarchy of energy scales determined by quantization, the direct Coulomb interaction, the electron–electron exchange interaction, and the electron–hole exchange interaction. For excitons up to the triply charged exciton, the behavior can be understood from a model assuming discrete levels within the quantum dot. For the triply charged exciton, this is no longer the case. In a magnetic field, we discover a coherent interaction with the continuum states, the Landau levels associated with the wetting layer.  相似文献   

4.
Photoluminescence and excitation of photoluminescence spectroscopy have been performed for two kinds of single InAs self-assembled quantum dots grown on GaAs. The presence of unintentional impurities (donors and acceptors) offers the possibility to switch from negative to positively charged excitons by selectively exciting impurity related optical transitions.  相似文献   

5.
6.
By means of a general method for treating mesoscopic systems with strong internal correlations, transport properties through a set of quasi-degenerate transitions in the interacting region, or active element (AE), are considered. It is shown that the behaviour of the AE drastically changes as the couplings to the contacts are varied from the strong to the weak coupling limit. These changes strongly influence the transport properties of the system, from a single increase of the current to a staircase form with unequally large steps. In the present study, kinematic interactions, non-equilibrium populations numbers and dependence on the bias voltage has been included in the treatment of the local properties of the AE. Analytical results for the equilibrium situation are presented as well as a derivation of the corresponding non-equilibrium quantities. Results from self-consistent numerical calculations of the considered case are presented.  相似文献   

7.
We study how wave function scarring in an open quantum dot is influenced as the strength of its environmental coupling is varied and show evidence for groups of wave function scars that recur periodically with gate voltage. The precise form of these scars is found to evolve with gate voltage, which we discuss in terms of the properties of the semi-classical orbits that give rise to the scars. We also provide convincing experimental evidence for a correlation between the scars and the oscillations observed in the conductance when the gate voltage is varied.  相似文献   

8.
9.
Helical quantum states in HgTe quantum dots with inverted band structures   总被引:1,自引:0,他引:1  
We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.  相似文献   

10.
A bound state in a continuum (BIC) might appear in open quantum dots for the variation in the dot’s shape. By means of the equations of motion of the Green’s functions, we investigate the effect of strong intradot Coulomb interactions on that phenomenon within the framework of the impurity Anderson model. The equation that the imaginary part of the poles of the Green’s function equals zero yields the condition for BICs. As a result, we show that the Coulomb interactions replicate the single-electron BICs into two-electron ones. The text was submitted by the authors in English.  相似文献   

11.
We use scanning gate microscopy to probe the ballistic motion of electrons within an open GaAs/AlGaAs quantum dot. Conductance maps are recorded by scanning a biased tip over the open quantum dot while a magnetic field is applied. We show that, for specific magnetic fields, the measured conductance images resemble the classical transmitted and backscattered trajectories and their quantum mechanical analogue. In addition, we prove experimentally, with this direct measurement technique, the existence of pointer states. The demonstrated direct imaging technique is essential for the fundamental understanding of wave function scarring and quantum decoherence theory.  相似文献   

12.
We study the electronic structure of spherical GaN quantum dots (QD's) with a substitutional acceptor impurity at the center. The size-dependent energy spectra are calculated within the sp3s* tight-binding model, which yields a good agreement with the confinement-induced blue shifts observed in undoped QD's. The acceptor binding energy is strongly enhanced in a QD and decreases with increasing size following a scaling law that extrapolates to the bulk experimental value. The size-dependent average radius of the hole orbit is also calculated. The results are in agreement with the available experimental data for Mg impurity in bulk GaN.  相似文献   

13.
By numerical diagonalization of honeycomb-lattice tight-binding Hamiltonian we calculate the density of state (DOS) of irregularly shaped graphene quantum dots fabricated in the form of graphene nano-flakes. The finite-size electron confinement and the edge states result in the central peak of DOS that is located at the zero-energy Dirac point. The amplitude and width of the peak are provided by the form of the graphene cluster, but no regular correlation with its shape was found.  相似文献   

14.
Different types of quantum beats were experimentally observed in the photoluminescence kinetics of semiconductor nanostructures with InP quantum dots characterized by strong inhomogeneous broadening of the optical transitions. Specific types of beats were selected by varying the magnitude and orientation of the magnetic field, the applied bias voltage, and the frequencies of the exciting and detected light. Parameters of the fine structure of electrons and holes in the system under study and characteristic relaxation times of the spin coherence are determined from the experimental data.  相似文献   

15.
Quantum dots based on materials with long-lived terahertz vibrations are studied. It is shown that squeezed states of such vibrations can result in microwave-frequency modulation of the optical radiation absorbed at electronic transitions in quantum dots. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 2, 199–200 (25 January 1997)  相似文献   

16.
17.
The energy spectrum and corresponding wave functions of a flat quantum dot with elliptic symmetry are obtained exactly. A detailed study is made of the effect of ellipticity on the energy levels and the corresponding wave functions. The analytical behavior of the energy levels in certain limiting cases is obtained.  相似文献   

18.
A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.  相似文献   

19.
20.
Electron energy levels in single dots, and energy splitting and tunneling times in stacked quantum dots are calculated as functions of structure parameters. An effective mass approach is used to solve the Schrödinger equation for cylindrical dots with finite confinement potentials. Strong confinement due to small sizes produces quantized energy levels in single dots and strong interactions of the wavefunctions with adjacent dots. This electronic coupling induces significant energy splittings and short tunneling times for characteristic structures used in experiments. This coupling may even yield coherent artificial molecular states with different optical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号