首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-rays and forward ion emission from laser-generated plasma in the Target Normal Sheath Acceleration regime of different targets with 10-μm thickness, irradiated at Prague Asterix Laser System (PALS) laboratory at about 1016 W/cm2 intensity, employing a 1,315 nm-wavelength laser with a 300-ps pulse duration, are investigated. The photon and ion emissions were mainly measured using Silicon Carbide (SiC) detectors in time-of-flight configuration and X-ray streak camera imaging. The results show that the maximum proton acceleration value and the X-ray emission yield growth are proportional to the atomic number of the irradiated targets. The X-ray emission is not isotropic, with energies increasing from 1 keV for light atomic targets to about 2.5 keV for heavy atomic targets. The laser focal position significantly influences the X-ray emission from light and heavy irradiated targets, indicating the possible induction of self-focusing effects when the laser beam is focalized in front of the light target surface and of electron density enhancement for focalization inside the target.  相似文献   

2.
Electron-positron pair creation in a standing wave is explored using a parameter-free quantum kinetic equation. Field strengths and frequencies corresponding to modern optical lasers induce a material polarization of the QED vacuum, which may be characterized as a plasma of e+e- quasiparticle pairs with a density of approximately 10(20) cm-3. The plasma vanishes almost completely when the laser field is zero, leaving a very small residual pair density n(r) which is the true manifestation of vacuum decay. The average pair density per period is proportional to the laser intensity but independent of the frequency nu. The density of residual pairs also grows with laser intensity but n(r) proportional to nu(2). With optical lasers at the forefront of the current generation, these dynamical QED vacuum effects can plausibly generate 5-10 observable two-photon annihilation events per laser pulse.  相似文献   

3.
An experimental investigation of lateral electron transport in thin metallic foil targets irradiated by ultraintense (>or=10(19) W/cm2) laser pulses is reported. Two-dimensional spatially resolved ion emission measurements are used to quantify electric-field generation resulting from electron transport. The measurement of large electric fields ( approximately 0.1 TV/m) millimeters from the laser focus reveals that lateral energy transport continues long after the laser pulse has decayed. Numerical simulations confirm a very strong enhancement of electron density and electric field at the edges of the target.  相似文献   

4.
By using temporal pulse shaping of high-contrast, short pulse laser interactions with solid density targets at intensities of 2 × 10(21) W cm(-2) at a 45° incident angle, we show that it is possible to reproducibly generate quasimonoenergetic proton and ion energy spectra. The presence of a short pulse prepulse 33 ps prior to the main pulse produced proton spectra with an energy spread between 25% and 60% (ΔE/E) with energy of several MeV, with light ions becoming quasimonoenergetic for 50 nm targets. When the prepulse was removed, the energy spectra was broad. Numerical simulations suggest that expansion of the rear-side contaminant layer allowed for density conditions that prevented the protons from being screened from the sheath field, thus providing a low energy cutoff in the observed spectra normal to the target surface.  相似文献   

5.
By using relativistic massively parallel PIC code MANDOR, which features arbitrary target design including 3D micro‐structuring, a study of ion acceleration in short laser pulse interaction with different thin targets has been performed. Based on 3D simulation results it has been shown that micro‐structures on the front surface of thin plane targets increase a number and energy of hot electrons in comparison with that for the case of pure plain foils of optimal thickness. As a result, the energy of accelerated ions also increases up to 50%. However, the efficiency of ion acceleration from structured target reduces with laser pulse intensity increase, so that for laser pulses of ultra‐relativistic intensity a positive role of surface micro‐structuring diminishes. We have also studied to which extent a sub‐ps imperfection of the laser pulse shape, which smoothes the surface micro‐structures suppresses high‐energy ion generation. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).  相似文献   

7.
A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations.  相似文献   

8.
超薄靶激光质子加速实验研究   总被引:3,自引:3,他引:0  
在超短超强飞秒SILEX-Ⅰ激光装置上,开展了薄膜靶激光质子加速的实验研究。实验发现激光预脉冲、靶厚度对质子加速有很大的影响。在激光强度3×1018~3×1019W/cm2条件下,采用前表面厚度为3μm铜、后表面镀4μm厚CH靶,质子的最大能量达到3.15 MeV。而对190 nm厚CH膜靶,质子的最大能量为0.54 MeV。初步研究了激光偏振对质子加速的影响,相同激光功率条件下,圆偏振激光加速产生的质子最大能量略低于P偏振打靶。这些结果与靶后鞘层加速机制相一致。  相似文献   

9.
The nonequilibrium plasma generated by nanosecond laser pulse is characterized using a SiC detector connected in time-of-flight configuration to measure the radiations emitted from the plasma. Different metallic targets were irradiated by the pulsed laser at an intensity of 1010 W/cm2 and 200 mJ pulse energy. The SiC allows detecting ultraviolet radiations and soft X-rays, electrons, and ions. The obtained plasma has a temperature of the order of tens to hundreds eV depending on the atomic number of the irradiated target and ion accelerations of the order of 100 eV per charge state.  相似文献   

10.
The effects of the interaction of an intense femtosecond laser pulse with large atomic clusters are considered. The pulse intensity is of the order of 1018 W cm?2. New effects appear when the magnetic component of the Lorentz force is taken into account. The second harmonic of laser radiation is generated. The second harmonic generation (SHG) efficiency is proportional to the square of the number of atoms in a cluster and the square of the laser radiation intensity. The resonance increase in the SHG efficiency at the Mie frequencies (both at the second harmonic frequency and fundamental frequency) proved to be insignificant because of the fast passage through the resonance during cluster expansion. The mechanisms of the expansion and accumulation of energy by electrons and ions in the cluster are discussed in detail. The energy accumulation by electrons mainly occurs due to stimulated inverse bremsstrahlung upon elastic reflection of the electrons from the cluster surface. The equations describing the cluster expansion take into account both the hydrodynamic pressure of heated electrons and the Coulomb explosion of the ionized cluster caused by outer shell ionization. It is assumed that both inner shell and outer shell ionization is described by the over barrier mechanism. It is shown that atomic clusters are more attractive for the generation of even harmonics than compared to solid and gas targets.  相似文献   

11.
The set of equations describing the motion of a thin (compared to the wavelength) target in the field of a laser pulse that takes into consideration separate motion of the electron and ion layers is derived. In the case of strong Coulomb coupling between the layers, the set of equation of motions of the layers is reduced to the well-known light-sail equation containing a self-consistent coefficient of nonlinear reflection of laser radiation by a moving target. The optimal thickness of the laser target at which the target acquires maximum energy for given laser-pulse parameters is determined. It is shown that this thickness depends not only on laser intensity, but also on laser-pulse duration and the ratio of electron and ion masses. The growth rates of transverse instability of optimal targets under their intense acceleration are analyzed. It is demonstrated that instability does not develop in the currently experimentally accessible range of laser intensities and pulse durations between 100 and 200 fs.  相似文献   

12.
Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations () and the potential () behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular–triangular (RT) pulse and rectangular–Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory (), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 1018 W/m2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.  相似文献   

13.
将调Q红宝石激光器输出的激光脉冲分别聚焦于元素Be,C和N制成的平面固体靶上,对所产生的浓密度高温等离子体的真空紫外辐射,在离靶面不同距离处,用增强型的硅光电二极管列阵为探测器的光学多道分析仪进行了观测。在摄得的光谱中,从类氢、类氦和类锂离子较高主量子数n发出的△n=1类型的谱线显著地被增宽。根据离子准静近似理论,得到相应的等离子体的电子密度随观察距离y的变化规律。 关键词:  相似文献   

14.
15.
窦银萍  谢卓  宋晓林  田勇  林景全 《物理学报》2015,64(23):235202-235202
本文对Gd靶激光等离子体极紫外光源进行了实验研究, 在 6.7 nm附近获得了较强的辐射, 并研究了6.7 nm 附近光辐射随打靶激光功率密度变化的规律以及收集角度对极紫外辐射的影响. 同时, 对平面Gd靶激光等离子光源的离子碎屑角分布进行了测量, 发现从靶面的法线到沿着靶面平行方向上Gd离子数量依次减少. 进一步研究结果表明采用0.9 T外加磁场的条件下可取得较好的Gd 离子碎屑阻挡效果.  相似文献   

16.
This paper describes the laser generation of Ge ion fluxes and their application to the modification of semiconductor materials by ion implantation. The Ge ions were produced by ablating solid targets using the PALS high-power iodine laser system at the PALS Research Centre in Prague, operating at its third harmonic frequency (438 nm wavelength) and producing 0.4 ns pulses with energy up to 0.25 kJ (intensity≤1015 W/cm2). The goal of these investigations was optimisation of the implantation of low and medium energy laser-generated Ge ion fluxes and they were carried out as part of the project PALS000929. Recently, a new repetitive pulse laser system at IPPLM in Warsaw, with a wavelength of 1.06 μm, energy of ~0.8 J in a 3.5 ns-pulse, repetition rate of up to 10 Hz, and intensity on target of up to 1011 W/cm2, has also been employed to produce Ge ions by irradiating solid targets. The laser-generated ions were investigated with diagnostics based on the time-of-flight method: various ion collectors and an electrostatic ion-energy analyzer. The Ge ion fluxes were implanted into Si and SiO2 substrates located at distances of 10–30 cm from the target. The SiO2 films were prepared on single crystal Si substrates and were implanted with Ge ions with different properties. The properties of the Ge-implanted layers, in particular, the depth distributions of implanted Ge ions, were characterised using Rutherford backscattering and other material surface diagnostic methods.  相似文献   

17.
Zhou CT  He XT 《Optics letters》2007,32(16):2444-2446
The effects of target density on proton acceleration driven by an intense sub-ps laser pulse are investigated using two-dimensional hybrid particle-in-cell simulations. Results show that at higher density the target-normal-sheath acceleration (TNSA) is more effective than shock acceleration for protons from a plastic target. Furthermore a lower-density target is favorable to higher energy of the TNSA protons. Moreover, the longitudinal electric fields at the target surfaces may reveal typical inhomogeneous structures for a long acceleration time. The conversion efficiency of laser energy into particle (electron, proton, and C(+) ion) energy is found to increase with decreasing target density.  相似文献   

18.

A pulsed infrared laser (Q-switched Nd:Yag) is employed to irradiate different metal targets having atomic number from Z =13 up to Z =82. The high laser fluence deposited on the metals, of the order of 100 v J/cm, produces high ablation yield and a plasma generation at the target surface. The emitted species are neutral and ionized atoms. Both components have been investigated in terms of yield emission, time-of-flight measurements and angular distribution. Results indicate that the main emission occurs mainly along the normal to the target surface, that the etching, at high fluence, is of the order of 10 v atoms/ pulse, that the atoms velocities are of the order of 10 v m/s, that the maximum ion energies are of the order of keV. During the laser irradiation, expanding and non-equilibrium plasma is produced in front of the target. The plasma has a fraction ionization depending by the metal species and generally within 10% and 80%. The plasma'temperature, at high fluence, can be theoretically calculated and reaches about 10 v K. The fractional ionization of the plasma, experimentally measured, has been investigated as a function of the laser fluence and of the energy binding of the target molecules. The ion emission yield is presented and discussed in view of the possibility to realize a laser ion source for ion accelerators.  相似文献   

19.
The energy distributions of protons emitted from the Coulomb explosion of hydrogen clusters by an intense femtosecond laser have been experimentally obtained. Ten thousand hydrogen clusters were exploded, emitting 8.1-keV protons under laser irradiation of intensity 6 × 1016W/cm2. The energy distributions are interpreted well by a spherical uniform cluster analytical model. The maximum energy of the emitted protons can be characterized by cluster size and laser intensity. The laser intensity scale for the maximum proton energy, given by a spherical cluster Coulomb explosion model, is in fairly good agreement with the experimental results obtained at a laser intensity of 1016–1017 W/cm2 and also when extrapolated with the results of three-dimensional particle simulations at 1020–1021 W/cm2. Energetic proton generation in low-density plastic (C5H10) foam by intense femtosecond laser pulse irradiation has been studied experimentally and numerically. Plastic foam was successfully produced by a sol-gel method, achieving an average density of 10 mg/cm3. The foam target was irradiated by 100-fs pulses of a laser with intensity 1 × 1018 W/cm2. A plateau structure extending up to 200 keV was observed in the energy distribution of protons generated from the foam target, with the plateau shape explained well by Coulomb explosion of lamella in the foam. The laser-foam interaction and ion generation were studied qualitatively by two-dimensional particle-in-cell simulations, which indicated that energetic protons are mainly generated by the Coulomb explosion. From the results, the efficiency of energetic ion generation in a low-density foam target by Coulomb explosion is expected to be higher than in a gas-cluster target.  相似文献   

20.
The velocities of energy transport in an undercritical plasma of polymer aerogel with and without copper nanoparticles were measured. Transmission of the laser light through targets of different thicknesses such as submicron three-dimensional polymer networks with densities below the critical value (0.13–0.52 N cr) for a wavelength of 0.438 μm and intensity of (3–7)·1014 W/cm2 at a half-height pulse duration of 0.32 ns was studied. The transfer of a heating laser radiation was registered on the rear side of the target. It ranged from a level of ∼0.5% for the thickness of a low-density layer of 400 μm and density of 9 mg/cm3 (mass per unit square of 0.36 mg/cm2) up to 50–60% for a thickness of 100 μm and density of 2.25 mg/cm3 (mass per unit square of 0.02 mg/cm2). The time dependences of the optical emission from the rear side of the targets were measured. They appear to be indicative of the plasma dynamics in two-layer targets (polymer foam on Al foil) and enable the estimation of the absorption depth for the laser light in an undercritical plasma. __________ Translated from Preprint No. 8 of the P. N. Lebedev Physical Institute, Moscow (2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号