首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a theory of the longitudinal g-factor of light holes in semiconductor quantum wells. It is shown that the absolute value of the light-hole g-factor can strongly exceed its value in the bulk and, moreover, the dependence of the Zeeman splitting on magnetic field becomes non-linear in relatively low fields. These effects are determined by the proximity of the ground light-hole subband, lh1, to the first excited heavy-hole subband, hh2, in GaAs/AlGaAs-type structures. The particular calculations are performed in the framework of Luttinger Hamiltonian taking into account both the magnetic field-induced mixing of lh1 and hh2 states and the mixing of these states at heterointerfaces, the latter caused by chemical bonds anisotropy. A theory of magneto-induced reflection and transmission of light through the quantum wells for the light-hole-to-electron absorption edge is also presented.  相似文献   

2.
The tight binding approximation is employed to study the Zeeman effect for the hole ground state in a quantum dot. A method is proposed for calculating the g factor for localized states in a quantum dot. This method can be used both for hole states and for electron states. Calculations made for a Ge/Si system with quantum dots show that the g factor of a hole in the ground state is strongly anisotropic. The dependence of the g factor on the size of a germanium island is analyzed and it is shown that anisotropy of the g factor increases with the island size. It is shown that the value of the g factor is mainly determined by the contribution of the state with the angular momentum component J z =±3/2 along the symmetry axis of the germanium island.  相似文献   

3.
对一系列δ掺杂浅受主铍(Be)原子的GaAs/AlAs多量子阱和均匀掺杂Be受主的GaAs体材料中Be原子的能级间跃迁进行了光致发光(PL)研究.实验中所用的样品是通过分子束外延技术生长的均匀掺杂Be受主的GaAs外延单层样品和一系列GaAs/AlAs多量子阱样品,并在每量子阱中央进行了Be原子的δ掺杂,量子阱宽度为30 到200 ?.在4.2 K温度下测量了上述系列样品的光致发光谱,清楚地观察到了束缚激子的受主从基态1s3/2Γ6)到第一激发态 关键词: 量子限制受主 光致发光 多量子阱 δ掺杂  相似文献   

4.
5.
We have studied the Zeeman splitting in ballistic hole quantum wires formed in a (311)A quantum well by surface gate confinement. Transport measurements clearly show lifting of the spin degeneracy and crossings of the subbands when an in-plane magnetic field B is applied parallel to the wire. When B is oriented perpendicular to the wire, no spin splitting is discernible up to B = 8.8 T. The observed large Zeeman splitting anisotropy in our hole quantum wires demonstrates the importance of quantum confinement for spin splitting in nanostructures with strong spin-orbit coupling.  相似文献   

6.
Results are presented concerning the characterization of p-Si/Si1-xGex/Si quantum wells (QW) by space charge spectroscopy. Analysis of potential barriers at the QW enables us to determine the valence band offset from such measurements. Admittance spectroscopy data of QWs with 30 nm undoped spacers, acceptor concentration NA of about 1017cm-3 in the cap and buffer layers, x=0.25 and a QW thickness in the range from 1 to 5 nm are in fair agreement with the proposed theoretical model. A decrease of the effective potential barriers due to hole tunneling via shallow acceptor states in the barrier is experimentally confirmed for 5 nm QW structures without spacers.  相似文献   

7.
Ge/Si superlattices containing Ge quantum dots were prepared by molecular beam epitaxy and studied by resonant Raman scattering. It is shown that these structures possess vibrational properties of both two-and zero-dimensional objects. The folded acoustic phonons observed in the low-frequency region of the spectrum (up to 15th order) are typical for planar superlattices. The acoustic phonon lines overlap with a broad emission continuum that is due to the violation of the wave-vector conservation law by the quantum dots. An analysis of the Ge and Ge-Si optical phonons indicates that the Ge quantum dots are pseudoamorphous and that mixing of the Ge and Si atoms is insignificant. The longitudinal optical phonons undergo a low-frequency shift upon increasing laser excitation energy (2.54–2.71 eV) because of the confinement effect in small-sized quantum dots, which dominate resonant Raman scattering.  相似文献   

8.
The spatial structure of excitons and the oscillator strength characterizing the intensity of interband optical transitions in vertically coupled Ge/Si quantum dots have been theoretically studied. It has been found that the probability of the exciton transition under certain conditions (the sizes of the quantum dots, the separation of the dots) can be much larger (up to a factor of 5) than the value for the case of single quantum dots. It is expected that the results will make it possible to approach the creation of efficient light-emitting and photoreceiving devices based on Si and Ge indirect-band semiconductors.  相似文献   

9.
Various structures of self-assembled Ge/Si quantum dot infrared photodetectors were implemented and investigated. The electronic structure of the QDIPs was studied by electrical and optical techniques including IV characteristics, dark current, photoconductivity, photoluminescence, and photo-induced infrared absorption. The photoconductive spectra consist of a broad multi-peak, composed of peaks ranging from 70 to 220 meV. Their relative intensity changes with bias. Comparative dark current measurements were performed. Dark current limits the performance of this first generation of Ge/Si QDIPs. It is plausible that direct doping in the dot layer is a viable way of reducing the dark current.  相似文献   

10.
We present a photoluminescence (PL) study of Ge quantum dots embedded in Si. Two different types of recombination processes related to the Ge quantum dots are observed in temperature-dependent PL measurements. The Ge dot-related luminescence peak near 0.80 eV is ascribed to the spatially indirect recombination in the type-II band lineup, while a high-energy peak near 0.85 eV has its origin in the spatially direct recombination. A transition from the spatially indirect to the spatially direct recombination is observed as the temperature is increased. The PL dependence of the excitation power shows an upshift of the Ge quantum dot emission energy with increasing excitation power density. The blueshift is ascribed to band bending at the type-II Si/Ge interface at high carrier densities. Comparison is made with results derived from measurements on uncapped samples. For these uncapped samples, no energy shifts due to excitation power or temperatures are observed in contrast to the capped samples.  相似文献   

11.
We calculate the differential conductance G(V) through a quantum dot in an applied magnetic field. We use a Keldysh conserving approximation for weakly correlated and the scattering-states numerical renormalization group for the intermediate and strongly correlated regime out of equilibrium. In the weakly correlated regime, the Zeeman splitting observable in G(V) strongly depends on the asymmetry of the device. In contrast, in the strongly correlated regime the position Δ(K) of the Zeeman-split zero-bias anomaly is almost independent of such asymmetries and of the order of the Zeeman energy Δ(0). We find a crossover from the purely spin-fluctuation driven Kondo regime at small magnetic fields with Δ(K)<Δ(0) to a regime at large fields where the contribution of charge fluctuations induces larger splittings with Δ(K)>Δ(0) as it was observed in recent experiments.  相似文献   

12.
The impurity photoconductivity spectra of Ge/Ge1−x Six strained heterostructures with quantum wells are investigated. It is established that the built-in deformation in quantum-size Ge layers substantially changes the spectrum of shallow acceptors, shifting it into the long-wavelength region of the far-IR range. In strong magnetic fields the photoconductivity lines are observed to split and shift as a function of the field. This makes it possible to carry out a classification of the transitions. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 2, 194–198 (25 January 1997)  相似文献   

13.
The spectra of Raman scattering by folded acoustic phonons in Si/Ge superlattices with pseudomorphic layers of Ge quantum dots (QDs) grown by low-temperature (T = 250°C) molecular beam epitaxy are studied. New features of the folded phonon lines related to the resonant enhancement and unusual intensity ratio of the doublet lines that cannot be explained by the existing theory have been observed. The observed modes are shown to be related to the vibrations localized to the QDs and induced by the folded phonons of the Si spacer layers. The calculations performed in the model of a one-dimensional chain of atoms have allowed the nature of the localization of acoustic phonons attributable to a modification of the phonon spectrum of a thin QD layer to be explained. The observed intensity ratio of the folded phonon doublet lines is caused by asymmetry of the relief of the QD layers.  相似文献   

14.
HgTe/HgCdTe量子阱中巨大电子Rashba自旋分裂   总被引:2,自引:0,他引:2       下载免费PDF全文
主要研究具有倒置能带结构的n-HgTe/HgCdTe第三类量子阱Shubnikov-de Haas(SdH)振荡中的拍频现象.发现在量子阱中电子存在强烈的Rashba自旋分裂,通过对SdH振荡进行三种不同方法的分析:SdH振荡对1/B关系的快速傅里叶变换、SdH振荡中拍频节点分析和对SdH振荡拍频数值拟合,得到了完全一致的电子Rashba自旋分裂能量(28—36 meV). 关键词: n-HgTe/HgCdTe Shubnikov-de Haas振荡 Rashba自旋分裂  相似文献   

15.
The photoconduction in a tunnel-coupled Ge/Si quantum dot (QD) array has been studied. The photoconductance (PC) sign can be either positive or negative, depending on the initial filling of QDs with holes. The PC kinetics has a long-term character (102?104 s at T = 4.2 K) and is accompanied by persistent photoconduction (PPC), whereby the PC value is not restored on the initial level even after relaxation for several hours. These phenomena are observed upon illumination by light with photon energies both greater and smaller than the silicon bandgap. A threshold light wavelength corresponding to a long-term PC kinetics depends on the QD filling with holes. A model describing the observed PC kinetics is proposed, according to which the main contribution to the PC is related to the degree of QD filling with holes. By applying the proposed model to the analysis of PC kinetics at various excitation levels, it is possible to determine the dependence of the hopping conductance on the number of holes per QD. The rate of the charge carrier density relaxation exponentially depends on the carrier density.  相似文献   

16.
17.
18.
The luminescence properties of double Ge/Si quantum dot structures are studied at liquid helium temperature depending on the Si spacer thickness d in QD molecules. A seven-fold increase in the integrated photoluminescence intensity is obtained for the structures with optimal thickness d = 2 nm. This enhancement is explained by increasing the overlap integral of electron and hole wavefunctions. Two main factors promote this increasing. The first one is that the electrons are localized at the QD base edges and their wavefunctions are the linear combinations of the states of in-plane Δ valleys, which are perpendicular in k-space to the growth direction [001]. This results in the increasing probability of electron penetration into Ge barriers. The second factor is the arrangement of Ge nanoclusters in closely spaced QD groups. The strong tunnel coupling of QDs within these groups increases the probability of hole finding at the QD base edge, that also promotes the increase in the radiative recombination probability.  相似文献   

19.
Symmetric GaGdN/AlGaN (Gd concentration: 2%) and GaN/AlGaN double quantum well superlattices (DQW-SLs) were grown by radio-frequency plasma-assisted molecular-beam epitaxy on GaN (0001) templates. Atomic steps were observed on all the sample surfaces by atomic force microscope. X-ray diffraction θ/2θ scan curves exhibited well-defined satellite structures. Room temperature ferromagnetism was confirmed for the GaGdN/AlGaN DQW-SL samples by using alternating gradient magnetometer. Strong photoluminescence was observed from both GaGdN and GaN QWs at higher energy side of GaN excitonic peak. Magneto-photoluminescence spectra for GaGdN/AlGaN DQW-SL samples showed a large magnetic field dependence of the excitonic energy by applying a magnetic field up to 7 T. The observed strong redshift of excitonic PL indicated an enhancement of Zeeman splitting of the free carrier energy levels in magnetic GaGdN/AlGaN DQW-SL. Enhanced g-factor was estimated to be about 60 for GaGdN/AlGaN DQW-SL sample with QW thickness of 1 nm.  相似文献   

20.
We study the effect of quantum dot size on the mid-infrared photocurrent, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage during molecular beam epitaxy of Ge/Si(001) system in the Stranski–Krastanov growth mode while keeping the deposition temperature to be the same. A device with smaller dots is found to exhibit a lower capture probability and a higher photoconductive gain and photoresponse. The integrated responsivity in the mid-wave atmospheric window (λ = (3–5) μm) is improved by a factor of about 8 when the average in-plane dot dimension changes from 18 to 11 nm. The decrease in the dot size is expected to reduce the carrier relaxation rate due to phonon bottleneck by providing strong zero-dimensional quantum mechanical confinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号