首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We demonstrate coherent control of the optical transition of single nitrogen-vacancy defect centers in diamond. On applying short resonant laser pulses, we observe optical Rabi oscillations with a half period as short as 1 ns, an order of magnitude shorter than the spontaneous emission time. By studying the decay of Rabi oscillations, we find that the decoherence is dominated by laser-induced spectral jumps. By using a low-power probe pulse as a detuning sensor and applying postselection, we demonstrate that spectral diffusion can be overcome in this system to generate coherent photons.  相似文献   

2.
刘纪彩  成飞  赵亚男  郭芬芬 《物理学报》2019,68(3):33701-033701
通过求解全波矢布洛赫方程研究了两能级原子与飞秒超快激光脉冲的相互作用过程,计算了不同拉比频率取值下原子所受光学偶极力和粒子数布居随时间的演化情况,分析了光场失谐量对光学势分布情况的影响.研究发现:由飞秒激光场产生的横向光力的时间平均值并不等于零,而是随着拉比频率的增加呈现振荡的增大趋势;纵向光力的时间平均作用也并非是拉比频率的单调函数,而是随着拉比频率的增加呈现周期性的振荡分布特性;光学势的分布对光场的失谐量具有明显的依赖性,随着失谐量的变化,光学势的性质也随之发生了改变.  相似文献   

3.
We study optically driven Rabi rotations of a quantum dot exciton transition between 5 and 50 K, and for pulse areas of up to 14π. In a high driving field regime, the decay of the Rabi rotations is nonmonotonic, and the period decreases with pulse area and increases with temperature. By comparing the experiments to a weak-coupling model of the exciton-phonon interaction, we demonstrate that the observed renormalization of the Rabi frequency is induced by fluctuations in the bath of longitudinal acoustic phonons, an effect that is a phonon analogy of the Lamb shift.  相似文献   

4.
Crossed vortex bottle beam trap for single-atom qubits   总被引:1,自引:0,他引:1  
We demonstrate trapping and quantum state control of single cesium atoms in a 532 nm wavelength bottle beam trap. The three-dimensional trap is formed by crossing two unit charge vortex beams. Single atoms are loaded with 50% probability directly from a magneto-optical trap. We achieve a trapping lifetime of up to 6 s and demonstrate fast Rabi oscillations with a coherence time of T(2)~43±9 ms.  相似文献   

5.
It is known that under resonance conditions, a group of strongly interacting bosonic atoms, trapped in a double-well potential, mimics a single particle, performing Rabi oscillations between the wells. By implication, all atoms need to tunnel at roughly the same time, even though the Bose–Hubbard Hamiltonian accounts only for one-atom-at-a-time transfers. The mechanism of this collective behavior is analyzed, the Rabi frequencies in the process are evaluated, and the limitation of this simple picture is discussed. In particular, it is shown that the small rapid oscillations superimposed on the slow Rabi cycle result from splitting the transferred cluster at the sudden onset of tunnelling, and disappear if tunnelling is turned on gradually.  相似文献   

6.
We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of ~(40)K atoms.Two Raman lasers couple two Zeeman energy levels,whose energy splitting depends on the external bias magnetic field.The Raman coupling strength is determined by measuring the Rabi oscillation frequency.The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies.The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases,which is in good agreement with the theoretical prediction.  相似文献   

7.
We propose an inverse idea of controlling the evolution of the population inversion by a time-dependent coupling between the cavity field and a two-level system described through the Jaynes-Oummings model. We demonstrate the detailed procedure by obtaining the population evolution taking the non-sinusoidal form, which is different from the previous sinusoidal Rabi oscillation as the cavity field frequency and coupling parameters are constant during the interaction time.  相似文献   

8.
We extend the exciton population equations of a two-level quantum dot system with weak excitation to the ones with strong excitations, in which, the phonon-induced intensity-dependent dephasing time and decay rate are involved. The straightforward calculated populations from the modified population equations demonstrate the damping behavior of Rabi oscillation as the external field increasing. The effect of the intensity-dependent dephasing time and the intensity-dependent decay rate are also discussed.  相似文献   

9.
王丽  李根全  肖绍武  郑长波 《物理学报》2010,59(12):8512-8517
在以三个电偶极跃迁构成简并N型四能级系统中,利用密度矩阵方程计算了介质对探测场的吸收,研究了激光场拉比相位对吸收的影响.结果表明:介质对探测场的吸收和放大取决于控制场和信号场的拉比相位,且吸收和放大随控制场、信号场的拉比相位改变而作周期性变化,周期为2π;而探测场的拉比相位变化对吸收没有影响.同时,控制场、信号场拉比相位对吸收的影响是相同的,而且拉比相位主要影响原子相干,对原子布居影响不大.  相似文献   

10.
We extend the exciton population equations of a two-level quantum dot system with weak excitation to the ones with strong excitations, in which, the phonon-induced intensity-dependent dephasing time and decay rate are involved. The straightforward calculated populations from the modified population equations demonstrate the damping behavior of Rabi oscillation as the external field increasing. The effect of the intensity-dependent dephasing time and the intensity-dependent decay rate are also discussed.  相似文献   

11.
The coherence times of dopant pentavalent chromium ions in CaWO? single crystal (0.0006at.% Cr(5+)) were investigated both theoretically and experimentally. Temperature dependences of spin-lattice relaxation time T? and phase memory time T(M) were measured in the temperature range 6-30 K at high (94 GHz, W band) and low (3.5 GHz, S band) frequencies of electron spin resonance. It follows from T(M) calculations that phase relaxation of Cr(5+) ion arises mainly from magnetic dipole interactions between the chromium ions. Anomalously fast damping of Rabi oscillations is detected in both S- and W-band experiments. It is shown that this phenomenon is caused by microwave field inhomogeneity inside the resonator. Relations between the damping time of Rabi oscillations, Rabi frequency and the crystal sample size are obtained. Lumped-element resonators and smaller sample dimensions are suggested to lower spin dephasing during transient nutations.  相似文献   

12.
Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a continuously observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of Rabi spectroscopy enabled a long coherence time of about 2.5 micros, corresponding to an effective qubit quality factor approximately 7000.  相似文献   

13.
The influence of local fields on the excitonic Rabi oscillations in an isolated, arbitrary shaped quantum dot (QD) has been theoretically investigated. QD interaction with both a classical electromagnetic field and quantum light has been considered. In the classical light, time harmonic and ultrashort pulse excitations are analyzed. The general formalism has been formulated for quantum light and applied to the case of a Fock qubit. Noticeable modification of the Rabi oscillation dynamics induced by the local fields is predicted to be observable in QDs exposed to both classical and quantum light. In particular, the bifurcation and anharmonism in the Rabi oscillations have been revealed under time harmonic excitation and a dependence of the Rabi oscillation period on the QD depolarization has been obtained.  相似文献   

14.
Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time TRabi =- 78 ns and energy relaxation time T~ = 315 ns. We found that the value of TRabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits.  相似文献   

15.
The dynamics of strongly confined laser driven semiconductor quantum dots coupled to phonons is studied theoretically by calculating the time evolution of the reduced density matrix using a numerical path integral method. We explore the cases of long pulses, strong dot-phonon and dot-laser coupling, and high temperatures, which, up to now, have been inaccessible. We find that the phonon-induced damping of Rabi rotations is a nonmonotonic function of the laser field that is increasing at low fields and decreasing at high fields. This results in a reappearance of Rabi rotations at high fields. This phenomenon is of a general nature which occurs for all temperatures and carrier-phonon coupling strengths.  相似文献   

16.
Within a two-band tight-binding model driven by DC–AC electric fields, we investigate the dynamics of electrons with Markoffian dephasing. We find that Rabi oscillations between the Bloch bands under the resonant condition may be destroyed by scattering from lattice imperfections. Through a perturbative calculation, we also obtain the effective decay time for the approach to equal Bloch band populations under conditions of small interband coupling and in the long-time limit. The decay rate shows characteristic sharp peaks at values of the parameters that give a signature of Rabi oscillations, and quasienergy spectra display avoided crossings at the same time.  相似文献   

17.
We demonstrate coherent nonlinear-optical control of excitons in a pair of quantum dots (QDs) coupled via dipolar interaction. The single-exciton population in the first QD is controlled by resonant picosecond excitation, giving rise to Rabi oscillations. As a result, the exciton transition in the second QD is spectrally shifted and concomitant Rabi oscillations are observed. We identify coupling between permanent excitonic dipole moments as the dominant interaction mechanism, whereas quasiresonant (F?rster) energy transfer is weak. Such control schemes based on dipolar interaction are a prerequisite for realizing scalable quantum logic gates.  相似文献   

18.
We demonstrate that photochromic molecules enable switching from the weak- to ultrastrong-coupling regime reversibly, by using all-optical control. This switch is achieved by photochemically inducing conformational changes in the molecule. Remarkably, a Rabi splitting of 700 meV is measured at room temperature, corresponding to 32% of the molecular transition energy. A similar coupling strength is demonstrated in a plasmonic structure. Such systems present a unique combination of coupling strength and functional capacities.  相似文献   

19.
We discuss the dynamics of a three-level V-type atom driven simultaneously by a cavity photon and microwave field by examining the atomic population evolution. Owing to the coupling effect of the cavity photon, periodical oscillation of the population between the two upper states and the ground state takes place, which is the well-known vacuum Rabi oscillation. Meanwhile, the population exchange between the upmost level and the middle level can occur due to the driving action of the external microwave field. The general dynamic behavior is the superposition of a fast and a slow periodical oscillation under the cooperative and competitive effect of the cavity photon and the microwave field. Numerical results demonstrate that the time evolution of the population is strongly dependent on the atom–cavity coupling coefficient g and Rabi frequency ?_e that reflects the intensity of the external microwave field. By modulating the two parameters g and ?_e, a large number of population transfer behaviors can be achieved.  相似文献   

20.
Individual laser-cooled atoms are delivered on demand from a single atom magneto-optic trap to a high-finesse optical cavity using an atom conveyor. Strong coupling of the atom with the cavity field allows simultaneous cooling and detection of individual atoms for time scales exceeding 15 s. The single atom scatter rate is studied as a function of probe-cavity detuning and probe Rabi frequency, and the experimental results are in qualitative agreement with theoretical predictions. We demonstrate the ability to manipulate the position of a single atom relative to the cavity mode with excellent control and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号