首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨圆  陈帅  李小兵 《物理学报》2018,67(23):237101-237101
本文研究了各向同性square-octagon晶格在内禀自旋轨道耦合、Rashba自旋轨道耦合和交换场作用下的拓扑相变,同时引入陈数和自旋陈数对系统进行拓扑分类.系统在自旋轨道耦合和交换场的影响下会出现许多拓扑非平庸态,包括时间反演对称破缺的量子自旋霍尔态和量子反常霍尔态.特别的是,在时间反演对称破缺的量子自旋霍尔效应中,无能隙螺旋边缘态依然能够完好存在.调节交换场或者填充因子的大小会导致系统发生从时间反演对称破缺的量子自旋霍尔态到自旋过滤的量子反常霍尔态的拓扑相变.边缘态能谱和自旋谱的性质与陈数和自旋陈数的拓扑刻画完全一致.这些研究成果为自旋量子操控提供了一个有趣的途径.  相似文献   

2.
A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the puddles of two-dimensional (2D) QSHE, which is simulated as quantum dots modeled by 2D massive Dirac Hamiltonian. We demonstrate that the spin dephasing effect can originate from the combination of the Rashba spin-orbit coupling and electron-phonon interaction, which gives rise to inelastic backscattering in edge states within the topological insulator quantum dots, although the time-reversal symmetry is preserved throughout. Finally, we discuss the tunneling between extended helical edge states and local edge states in the QSH quantum dots, which leads to backscattering in the extended edge states. These results can explain the more robust edge transport in InAs/GaSb QSH systems.  相似文献   

3.
The quantum spin Hall (QSH) effect and the quantum anomalous Hall (QAH) effect in Lieblattice are investigated in the presence of both Rashba spin-orbit coupling (SOC) anduniform exchange field. The Lieb lattice has a simple cubic symmetry, which ischaracterized by the single Dirac-cone per Brillouin zone and the middle flat band in theband structure. The intrinsic SOC is essentially needed to open the full energy gap in thebulk. The QSH effect could survive even in the presence of the exchange field. In terms ofthe first Chern number and the spin Chern number, we study the topological nature and thetopological phase transition from the time-reversal symmetry broken QSH effect to the QAHeffect. For Lieb lattice ribbons, the energy spectrum and the wave-function distributionsare obtained numerically, where the helical edge states and the chiral edge states revealthe non-trivial topological QSH and QAH properties, respectively.  相似文献   

4.
We study the effects of a gate-controlled Rashba spin-orbit coupling to quantum spin Hall edge states in HgTe quantum wells. A uniform Rashba coupling can be employed in tuning the spin orientation of the edge states while preserving the time-reversal symmetry. We introduce a sample geometry where the Rashba coupling can be used in probing helicity by purely electrical means without requiring spin detection, application of magnetic materials or magnetic fields. In the considered setup a tilt of the spin orientation with respect to the normal of the sample leads to a reduction in the two-terminal conductance with current-voltage characteristics and temperature dependence typical of Luttinger liquid constrictions.  相似文献   

5.
We investigate the equilibrium spin transport in a ferromagnet/noncentrosymmetric superconductor (FM/NCS) junction where the NCS has a dominant triplet order parameter and helical edge state. Based on the symmetry analysis and numerical calculation, we demonstrate that there is a nonzero spin supercurrent flowing in the junction, which stems from the exchange coupling between the FM magnetization and triplet Cooper-pair spin. It is also found that a transverse spin current other than the helical edge spin current is flowing along the interface of the junction, and its polarization is related to the longitudinal spin supercurrent. Besides, an equilibrium Hall current is also shown to flow along the junction’s interface due to the broken time-reversal symmetry from the FM.  相似文献   

6.
We have investigated spin singlet Mott states of spin-one bosons with antiferromagnetic interactions. These spin singlet states do not break rotational symmetry and exhibit remarkably different macroscopic properties compared with nematic Mott states of spin-one bosons. We demonstrate that the dynamics of spin singlet Mott states is fully characterized by even- or odd-class quantum dimer models. The difference between spin singlet Mott states for even and odd numbers of atoms per site can be attributed to a selection rule in the low energy sectors of on-site Hilbert spaces; alternatively, it can also be attributed to an effect of Berry’s phases on bosonic Mott states. We also discuss evidence for spin singlet quantum condensate of spin-one atoms. Our main finding is that in a projected spin singlet Hilbert space, the low energy physics of spin-one bosons is equivalent to that of a Bose-Hubbard model for spinless bosons interacting via Ising gauge fields. The other major finding is spin-charge separation in some one-dimensional Mott states. We propose charge-e spin singlet superfluid for an odd number of atoms per lattice site and charge-2e spin singlet superfluid for an even number of atoms per lattice site in one-dimensional lattices. All discussions in this article are limited to integer numbers of bosons per site.  相似文献   

7.
The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.  相似文献   

8.
We compute the density of states rho(varepsilon) in N coupled chains with random hopping. At zero energy, rho(varepsilon) shows a singularity that strongly depends on the parity of N. For odd N, rho(varepsilon) approximately 1/|varepsilonln (3)varepsilon|, with and without time-reversal symmetry. For even N, rho(varepsilon) approximately |lnvarepsilon| in the presence of time-reversal symmetry, while there is a pseudogap, rho(varepsilon) approximately |varepsilonlnvarepsilon|, in the absence of time-reversal symmetry.  相似文献   

9.
陈泽国  吴莹 《物理学报》2017,66(22):227804-227804
研究了圆环型波导依照蜂窝结构排列的声子晶体系统中的拓扑相变.利用晶格结构的点群对称性实现赝自旋,并在圆环中引入旋转气流来打破时间反演对称性.通过紧束缚近似模型计算的解析结果表明,没有引入气流时,调节几何参数,系统存在普通绝缘体和量子自旋霍尔效应绝缘体两个相;引入气流后,可以实现新的时间反演对称性破缺的量子自旋霍尔效应相,而增大气流强度,则可以实现量子反常霍尔效应相.这三个拓扑相可以通过自旋陈数来分类.通过有限元软件模拟了多个系统中边界态的传播,发现不同于量子自旋霍尔效应相,量子反常霍尔相系统的表面只支持一种自旋的边界态,并且它无需时间反演对称性保护.  相似文献   

10.
A single pair of helical edge states as realized at the boundary of a quantum spin Hall insulator is known to be robust against elastic single particle backscattering as long as time reversal symmetry is preserved. However, there is no symmetry preventing inelastic backscattering as brought about by phonons in the presence of Rashba spin orbit coupling. In this Letter, we show that the quantized conductivity of a single channel of helical Dirac electrons is protected even against this inelastic mechanism to leading order. We further demonstrate that this result remains valid when Coulomb interaction is included in the framework of a helical Tomonaga Luttinger liquid.  相似文献   

11.
《Physics letters. A》2014,378(22-23):1647-1650
In a recent paper, Gohler et al. [1] report that a high efficiency electron spin filter can be constructed from an adsorbed monolayer of double-stranded DNA (dsDNA). Understanding the mechanisms responsible for spin filtering under these conditions has proven to be a challenge, as classical analysis fails to account for the high degree of polarization observed. In this paper we show that these observations can be understood since conduction electrons in the DNA molecule are characterized by specific helical states having a magnetic moment opposite to the direction of the electron wavevector. These helical states are fundamental to the quantum-mechanical properties of periodic structures with helical symmetry. Free electrons passing through the DNA monolayer interact with these helical states, but the strength of this interaction depends on the relative orientation of the electron spin and the magnetic moment associated with the possible helical states. One of these configurations leads to a negligible interaction resulting in high spin polarization in the transmitted electron beam. The overall effect is that the free electron flux component with a magnetic moment in an opposite direction to the magnetic moment of the helical states can pass through the dsDNA monolayer without absorption, while the other spin component is highly absorbed by dsDNA. This is consistent with the finding that a monolayer of single-stranded DNA does not exhibit similar spin filtering properties.  相似文献   

12.
Topological insulators have a bulk band gap like an ordinary insulator and conducting states on their edge or surface which are formed by spin–orbit coupling and protected by time-reversal symmetry. We report theoretical analyses of the electronic properties of three-dimensional topological insulator Bi2Se3 film on different energies. We choose five different energies (–123, –75, 0, 180, 350 meV) around the Dirac cone (–113 meV). When energy is close to the Dirac cone, the properties of wave function match the topological insulator’s hallmark perfectly. When energy is far way from the Dirac cone, the hallmark of topological insulator is broken and the helical states disappear. The electronic properties of helical states are dug out from the calculation results. The spin-momentum locking of the helical states are confirmed. A 3-fold symmetry of the helical states in Brillouin zone is also revealed. The penetration depth of the helical states is two quintuple layers which can be identified from layer projection. The charge contribution on each quintuple layer depends on the energy, and has completely different behavior along K and M direction in Brillouin zone. From orbital projection, we can find that the maximum charge contribution of the helical states is pz orbit and the charge contribution on pyand px orbits have 2-fold symmetry.  相似文献   

13.
《Annals of Physics》1987,180(1):1-73
The Hartree-Fock-Bogoliuboy problem with restoration of the broken symmetries before the variation as it has been formulated recently within the VAMPIR and EXCITED VAMPIR approaches is studied in more detail. Special emphasis is put on the implications of various symmetry restrictions imposed on the quasiparticle transformations. It is shown that the use of essentially complex transformations provides a possibility to account for time-odd unnatural parity pairing correlations in the wavefunctions without being forced to give up axial and time-reversal symmetry. It is illustrated that together with parity and neutron-proton mixing the use of such complex mean fields extends the applicability of the VAMPIR and EXCITED VAMPIR approaches to states with arbitrary spin and parity in both doubly even and doubly odd nuclear systems. The corresponding variational equations are explicitly evaluated and the numerical feasibility of their solution is investigated.  相似文献   

14.
Xian-Dong Li 《中国物理 B》2022,31(11):110304-110304
The Janus monolayer transition metal dichalcogenides (TMDs) $MXY$ ($M={\rm Mo}$, W, $etc$. and $X, Y={\rm S}$, Se, $etc$.) have been successfully synthesized in recent years. The Rashba spin splitting in these compounds arises due to the breaking of out-of-plane mirror symmetry. Here we study the pairing symmetry of superconducting Janus monolayer TMDs within the weak-coupling framework near critical temperature $T_{\rm c}$, of which the Fermi surface (FS) sheets centered around both $ărGamma$ and $K (K')$ points. We find that the strong Rashba splitting produces two kinds of topological superconducting states which differ from that in its parent compounds. More specifically, at relatively high chemical potentials, we obtain a time-reversal invariant $s + f + p$-wave mixed superconducting state, which is fully gapped and topologically nontrivial, $i.e.$, a $\mathbb{Z}_2$ topological state. On the other hand, a time-reversal symmetry breaking $d + p + f$-wave superconducting state appears at lower chemical potentials. This state possess a large Chern number $|C|=6$ at appropriate pairing strength, demonstrating its nontrivial band topology. Our results suggest the Janus monolayer TMDs to be a promising candidate for the intrinsic helical and chiral topological superconductors.  相似文献   

15.
We study a chiral spin liquid wave function defined as a Gutzwiller projected BCS state with a complex pairing function. After projection, spontaneous dimerization is found for any odd but finite number of chains, thus satisfying the Lieb-Schultz-Mattis theorem, whereas for an even number of chains there is no dimerization. The two-dimensional thermodynamic limit is consistently reached for a large number of chains since the dimer order parameter vanishes in this limit. This property clearly supports the possibility of a spin liquid ground state in two dimensions with a gap to all physical excitations and with no broken translation symmetry.  相似文献   

16.
In this paper, we find that topological insulators with time-reversal symmetryand inversion symmetry featuring two-dimensional quantum spin Hall (QSH) state can be divided into 16 classes, which are characterized by four Z2topological variables ζk=0,1 at four points with high symmetry in the Brillouin zone. We obtain the corresponding edge states for each one of these sixteen classes of QSHs. In addition, it is predicted that massless fermionic excitations appear at the quantum phase transition between different QSH states. In the end, we also briefly discuss the three-dimensional case.  相似文献   

17.
Topologically protected helical states at a mass-inverted quantum dot in graphene are studied by analyzing both tight-binding and kernel polynomial method calculations. The mass-inverted quantum dot is introduced by considering a heterojunction between two different mass domains, which is similar to the domain wall in bilayer graphene. The numerical results show emergent metallic channels across the mass gap when the signs of the mass terms are opposite. The eigenstates of the metallic channels are revealed to be doubly degenerate—each state propagates along opposite directions, maintaining the time-reversal symmetry of graphene. The robustness of the metallic channels is further examined, concluding with the fact that helical states are secured unless atomic vacancies form near the domain wall. Such helical states circulating along the topological defects may pave a novel route to engineering topological states based on graphene.  相似文献   

18.
Spin current and accumulation generated by the electric field in a spin Hall insulator (SHI) are investigated theoretically in terms of the Keldysh formalism. In contrast to the quantum Hall system, there are no massless edge modes in general. The spin current is generated near the contacts to the electrodes by the hybridization between the metallic states and the conduction/valence bands of the SHI, but is truncated by the sink and source of the spin. However, one can produce the spin current flowing out to the conductors, which is attached to the SHI, and also the spin accumulation there, due to the leakage charge current which breaks the time-reversal symmetry.  相似文献   

19.
This presentation gives an overview over phenomena occurring in unconventional superconductors with broken time-reversal symmetry. The best-known effect related with broken time-reversal symmetry is intrinsic magnetism observable by μSR. In many cases this magnetism is connected to the appearance of chiral quasiparticle edge states which originate from topological properties of the superconducting order parameter. Time-reversal symmetry can also be broken only locally and has then strong influence of the local quasiparticle spectrum. The existence of vortices with fractional flux pinned strongly on domain walls in time-reversal symmetry breaking superconductors leads to unusual flux flow behavior.  相似文献   

20.
MnSi is an itinerant magnet which at low temperatures develops a helical spin-density wave. Under pressure it undergoes a transition into an unusual partially ordered state whose nature is debated. Here we propose that the helical spin crystal (the magnetic analog of a solid) is a useful starting point to understand partial order in MnSi. We consider different helical spin crystals and determine conditions under which they may be energetically favored. The most promising candidate has bcc structure and is reminiscent of the blue phase of liquid crystals in that it has line nodes of magnetization protected by symmetry. We introduce a Landau theory to study the properties of these states, in particular, the effect of crystal anisotropy, magnetic field, and disorder. These results compare favorably with existing data on MnSi from neutron scattering and magnetic field studies. Future experiments to test this scenario are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号