首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionization pathways and ion mobility were determined for sets of structural isomeric and stereoisomeric non-polar hydrocarbons (saturated and unsaturated cyclic hydrocarbons and aromatic hydrocarbons) using a novel miniature differential mobility spectrometer with atmospheric-pressure photoionization (APPI) to assess how structural and stereochemical differences influence ion formation and ion mobility. The analytical results obtained using the differential mobility spectrometry (DMS) were compared with the reduced mobility values measured using conventional time-of-flight ion mobility spectrometry (IMS) with the same ionization technique.The majority of differences in DMS ion mobility spectra observed among isomeric cyclic hydrocarbons can be explained by the formation of different product ions. Comparable differences in ion formation were also observed using conventional IMS and by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. Using DMS, isomeric aromatic hydrocarbons can in the majority of cases be distinguished by the different behavior of product ions in the strong asymmetric radio frequency (rf) electric field of the drift channel. The different peak position of product ions depending on the electric field amplitude permits the differentiation between most of the investigated isomeric aromatics with a different constitution; this stands in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomeric aromatic compounds.  相似文献   

2.
The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization.  相似文献   

3.
Ion mobility spectrometry (IMS) was applied to determine the influence of structural features of nanocluster formation of picoline isomers in ion mobility spectrometry. Since the results of our studies show that different isomers have the same mobilities in pure nitrogen buffer gas and their corresponding peaks are totally overlapped, 2-butanol vapor was introduced into buffer gas by means of an online system from 0 to 300 mL min?1. We found different structural features of these isomeric compounds which cause distinct differences in ion mobility spectra. These differences result from the formation of different nanocluster product ions (~1 nm3) with different cross section areas formed depending on the occurrence of certain structural features (position of the methyl group on the pyridine ring). The size of cluster product ions formed was determined using cross section area measurements. The effects of temperature in the range from 80 to 200 °C and electric field strength have also been investigated. At 140–160 °C and 636 V cm?1, optimum peak-to-peak resolution can be obtained.  相似文献   

4.
H. Borsdorf  E.G. Nazarov 《Talanta》2007,71(4):1804-1812
The ion mobilities of halogenated aromatics which are of interest in environmental chemistry and process monitoring were characterized with field-deployable ion mobility spectrometers and differential mobility spectrometers. The dependence of mobility of gas-phase ions formed by atmospheric-pressure photoionization (APPI) on the electric field was determined for a number of structural isomers. The structure of the product ions formed was identified by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. In contrast to conventional time-of-flight ion mobility spectrometry (IMS) with constant linear voltage gradients in drift tubes, differential mobility spectrometry (DMS) employs the field dependence of ion mobility. Depending on the position of substituents, differences in field dependence were established for the isomeric compounds in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomers investigated. These findings permit the differentiation between most of the investigated isomeric aromatics with a different constitution using DMS.  相似文献   

5.
We investigated the influence of structural differences on the ionization pathways and drift behavior in ion mobility spectrometry for cyclic and aliphatic hydrocarbons with different functional groups. The sets of cyclic and aliphatic compounds had an identical mass or a mass difference of 2 Da. Therefore, mass effects can be neglected during the investigation of these compounds. Depending on the functional group, considerable differences were found in the detectable concentration ranges and in the number and position of product ion peaks in ion mobility spectra. The spectra of chlorinated compounds and hydrocarbons show no correlation to their calculated collisional cross sections. Differences in collisional cross section between cyclic and aliphatic substances investigated were only found to influence the drift times detected for amines and aliphatic aldehydes while complex ion chemistry was observed for the other substances.  相似文献   

6.
Product ion spectra from thirteen C8-substituted alkylaniline adducts of guanine and deoxyguanosine were generated using electrospray ionization and quadrupole ion trap mass spectrometry and studied to investigate the possibility of differentiating isomeric adduct structures based upon the relative abundances of fragment ions derived from the alkylaniline-modified guanine bases (BH2+ ions). The structural discrimination of the BH2+ ions formed by attachment of isomeric alkylanilines to the C8 position of guanine is a challenging problem because the ions tend to yield product ion spectra that are qualitatively identical upon collisional activation. In this study, a statistical method, referred to as a similarity index, was used to compare the product ion spectra of isomeric BH2+ ions and differentiate their structures. All the adducts investigated could be distinguished from SIs calculated using 5–6 product ions. These results suggest that a searchable database of product ion spectra may be created and used to characterize DNA adducts from aromatic amines whenever they are detected at levels amenable to mass spectral analysis.  相似文献   

7.
The positive-ion mass spectra of a number of didehydro amino acids, ionized by electron impact and/or thermospray, and collision-induced dissociation spectra taken at collision energies of a few electron volts and keV have been performed on multiple quadrupole and reversed geometry sector instruments. Observed differences in the mass spectra and in the fragmentation patterns are explained in terms of different isomeric structures, different internal excitation energies and different ion transit times between the ion source and the collision cell. Molecular ions of unhydrated amino acids are efficiently formed both by electron impact and thermospray, whilst molecular ions of the hydrated compounds are formed more efficiently by the latter technique. The present investigation demonstrates that the use of different ionization techniques combined with mass spectrometry/mass spectrometry measurements at different collision energies yields a wealth of information relevant to structural characterization of this important class of molecules.  相似文献   

8.
Negative ion fast-atom bombardment tandem mass spectrometry has been used in the analysis of monosulfated disaccharides. These commercially obtained disaccharides have been enzymatically prepared from glycosaminoglycans using polysaccharide lyases. Three disaccharides from chondroitin sulfate and dermatan sulfate and two disaccharides from heparan sulfate and chemically derivatized heparin were analyzed. All five disaccharides were isomeric, with differences in sulfate position and linkage position. The full-scan mass spectra are useful in differentiating isomers when the sulfate group resides on different saccharide units. This structural information was obtained from fragment ions produced through cleavage at the glycosidic linkage. the full-scan mass spectra of each monosulfated disaccharide also produced intense molecular anions having long lifetimes. Collisional activation of these resulted in tandem mass spectra rich in significant product ions. Some of these fragment ions were formed through ring cleavage and were useful in the determination of both sulfate and linkage position.  相似文献   

9.
The electron ionization and methane chemical ionization mass spectra of some 2,2-disubstituted 1,3-dioxolanes, 1,3-dithiolanes and 1,3-oxathiolanes were studied. Especially, the effect of the length of the side chain in ring position 2 of these compounds and the ease of formation of possible lactone/thiolactone ion as a fragmentation product were examined. In addition, two 2,2-disubstituted 1,3-dioxanes were studied to see the effect of the bigger ring size. The formation of lactone ions was more favorable under methane chemical ionization than under electron ionization conditions. The structures of fragment ions and the ions generated from model compounds were carefully studied using both high- and low-energy collision-induced dissociation. Also ab initio molecular orbital calculations up to the HF/6–31G** level of theory for protonated 2-methyl-2-propanoic acid ethyl ester of 1,3-dioxolane, 1,3-oxathiolane and 1,3-dithiolane and for two isomeric bicyclic ions were carried out. The theoretical results obtained favor the formation of the lactone ion. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Benzodiazepines are a commonly abused class of drugs; requiring analytical techniques that can separate and detect the drugs in a rapid time period. In this paper, the two-dimensional separation of five benzodiazepines was shown by electrospray ionization (ESI) ion mobility spectrometry (IMS)-mass spectrometry (MS). In this study, both the two dimensions of separation (m/z and mobility) and the high resolution of our IMS instrument enabled confident identification of each of the five benzodiazepines studied. This was a significant improvement over previous IMS studies that could not separate many of the analytes due to low instrumental resolution. The benzodiazepines that contain a hydroxyl group in their molecular structure (lorazepam and oxazepam) were found to form both the protonated molecular ion and dehydration product as predominant ions. Experiments to isolate the parametric reasons for the dehydration ion formation showed that it was not the result of corona discharge processes or the potential applied to the needle. However, the potential difference between the needle and first drift ring did influence both the relative intensity ratios of the two ions and the ion sensitivity.  相似文献   

11.
Since the development of electrospray ionization (ESI) for ion mobility spectrometry mass spectrometry (IMMS), IMMS have been extensively applied for characterization of gas-phase bio-molecules. Conventional ion mobility spectrometry (IMS), defined as drift tube IMS (DT-IMS), is typically a stacked ring design that utilizes a low electric field gradient. Field asymmetric ion mobility spectrometry (FAIMS) is a newer version of IMS, however, the geometry of the system is significantly different than DT-IMS and data are collected using a much higher electric field. Here we report construction of a novel ambient pressure dual gate DT-IMS coupled with a FAIMS system and then coupled to a quadrupole ion trap mass spectrometer (QITMS) to form a hybrid three-dimensional separation instrument, DT-IMS-FAIMS-QITMS. The DT-IMS was operated at ~3 Townsend (electric field/number density (E/N) or (Td)) and was coupled in series with a FAIMS, operated at ~80 Td. Ions were mobility-selected by the dual gate DT-IMS into the FAIMS and from the FAIMS the ions were detected by the QITMS for as either MS or MSn. The system was evaluated using cocaine as an analytical standard and tested for the application of separating three isomeric tri-peptides: tyrosine-glycine-tryptophan (YGW), tryptophan-glycine-tyrosine (WGY) and tyrosine-tryptophan-glycine (YWG). All three tri-peptides were separated in the DT-IMS dimension and each had one mobility peak. The samples were partially separated in the FAIMS dimension but two conformation peaks were detected for the YWG sample while YGW and WGY produced only one peak. Ion validation was achieved for all three samples using QITMS.  相似文献   

12.
Electrospray ionisation quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS) has been used for characterisation of a selection of naturally occurring and synthetic coumarins from different structural classes. The product ions, suggested in earlier studies by electrospray ionisation ion trap mass spectrometry (ESI-MS(n)), are unequivocally established for the representative coumarins by virtue of accurate mass measurement. Synthetic coumarins that are unsubstituted in the heterocyclic ring give rise to a major product ion by loss of CO(2), whereas those substituted in the heterocyclic ring generally undergo alternative fragmentation releasing neutral species such as ketene or methyl ketene. Naturally occurring coumarins, unsubstituted in the heterocyclic ring and substituted in the benzene ring with chains or rings of hydrocarbons and oxygen, principally fragment at the side chain releasing unsaturated hydrocarbons. The ESI-QTOF-MS/MS behaviour of some naturally occurring and synthetic quinolines which are structurally similar or fragment similarly are included where appropriate.  相似文献   

13.
Comprehensive two‐dimensional gas chromatography (GC × GC) coupled to time‐of‐flight mass spectrometry is a powerful separation tool for complex petroleum product analysis. However, the most commonly used electron ionization (EI) technique often makes the identification of the majority of hydrocarbons impossible due to the exhaustive fragmentation and lack of molecular ion preservation, prompting the need of soft‐ionization energies. In this study, three different soft‐ionization techniques including photo ionization (PI), chemical ionization (CI), and field ionization (FI) were compared against EI to elucidate their relative capabilities to reveal different base oil hydrocarbon classes. Compared with EI (70 eV), PI (10.8 eV) retained significant molecular ion (M) information for a large number of isomeric species including branched‐alkanes and saturated monocyclic hydrocarbons along with unique fragmentation patterns. However, for bicyclic/polycyclic naphthenic and aromatic compounds, EI played upper hand by retaining molecular as well as fragment ions to identify the species, whereas PI exhibited mainly molecular ion signals. On the other hand, CI revealed selectivity towards different base oil groups, particularly for steranes, sulfur‐containing thiophenes, and esters, yielding protonated molecular ions (M + H)+ for unsaturated and hydride abstracted ions (M‐H+) for saturated hydrocarbons. FI, as expected, generated intact molecular ions (M) irrespective to the base oil chemical classes. It allowed elemental composition by TOFMS with a mass resolving power up to 8000 (FWHM) and a mass accuracy of 1 mDa, leading to the calculation of heteroatomic content, double bond equivalency, and carbon number of the compounds. The qualitative and quantitative results presented herein offer a unique perspective into the detailed comparison of different ionization techniques corresponding to several hydrocarbon classes.  相似文献   

14.
Flavonol 3,7-di-O-glycosides were investigated by negative ion electrospray ionization tandem mass spectrometry using a quadrupole linear ion trap (LIT) mass spectrometer. The results indicate that the fragmentation behavior of flavonol 3,7-di-O-glycosides is substantially different from that of their isomeric mono-O-diglycosides. In order to characterize a flavonoid as a flavonol 3,7-di-O-glycoside, both [Y3(0) - H]-* and [Y(0) - 2H]- ions should be present in [M - H]- product ion spectrum. The MS(3) product ion spectra of Y3(0)-, [Y3(0) - H]-* and Y7(0)- ions generated from the [M - H]- ion provide sufficient structural information for the determination of glycosylation position. Furthermore, the glycosylation positions are determined by comparing the relative abundances of Y3(0)- and Y7(0)- ions and their specific fragmentation patterns with those of flavonol mono-O-glycosides. In addition, a [Y3(0) - H]-* ion formed by the homolytic cleavage of 3-O glycosidic bond with high abundance points to 3-O glycosylation, while a [Y(0) - 2H]- ion formed by the elimination of the two sugar residues is consistent with glycosylation at both the 3-O and 7-O positions. Investigation of negative ion ESI-MS(2) and MS(3) spectra of flavonol O-glycosides allows their rapid characterization as flavonol 3,7-di-O-glycoside and their differentiation from isomeric mono-O-diglycosides, and also enables their direct analysis in crude plant extracts.  相似文献   

15.
Atmospheric pressure chemical ionization and ion mobility spectrometry (IMS) have traditionally been viewed as a qualitative analytical technique for identifying specific chemicals in the atmosphere. This work employs a nonlinear model based on molecular collision rate theory for quantitative modeling of chemical analyte concentrations. The collision rate between any two molecules depends on the relative populations of each chemical species in the volume of air analyzed where most collisions between ions, or neutral molecules and ions, result in no charge transfer. The rate constants for formation of product ions and consumption of source ions are estimated using empirical data over a wide concentration range for several analytes and reagent gases. The rate constants are unique to the analyte and the reagent gas as well as the sensitivity of the particular IMS instrument and provide a quantitative model to relate the mobility peak amplitudes to the analyte concentration. The rate constants can also be normalized by the reaction ion consumption rate constant to remove the IMS instrument sensitivity and provide a qualitative metric for analyte identification independent of a particular IMS instrument. A quantitative example is given for an acetic acid plume measured by a hand-held IMS detector outdoors has the plume passes. The quantitative rate constants provide a reasonable basis for estimating analyte concentration from the ion mobility spectra over a wide range of analyte concentrations.  相似文献   

16.
Traveling-wave ion mobility (TWIM) coupled to mass spectrometry (MS) has emerged as a powerful tool for structural and conformational analysis of proteins and peptides, allowing the analysis of isomeric peptides (or proteins) with the same sequence but modified at different residues. This work demonstrates the use of the novel TWIM-MS technique to separate isomeric peptide ions derived from chemical cross-linking experiments, which enables the acquisition of distinct product ion spectra for each isomer, clearly indicating modification on different sites. Experiments were performed with four synthetic peptides, for which variable degrees of mobility separation were achieved. In cases of partially overlapping mobility arrival time distributions (ATDs), extracting the ATDs of fragment ions belonging to each individual isomer allowed their separation into two distinct ATDs. Accumulation over regions from the specific ATDs generates the product ion spectrum of each isomer, or a spectrum highly enriched in their fragments. The population of both modified peptide isomers was correlated with the intrinsic reactivities of different Lys residues from reactions conducted at different pH conditions.  相似文献   

17.
Propranolol, deuterium- and 18O-labeled propranolol and related compounds were analyzed using an ion trap mass spectrometer equipped with a modified Finnigan API electrospray interface. Sequential product ion (MSn) experiments were used to elucidate fragmentation pathways for these compounds. The observed ions were compared to those observed under electron impact (EI) conditions. The electrospray ionization (ESI) ion trap spectra, as well as the EI spectra, afford useful information to allow assignments of most product ions, many of which retain portions of the aliphatic three-carbon side chain.  相似文献   

18.
Mass spectral differentiation of 3,4-methylenedioxymethamphetamine (3,4-MDMA), a controlled drug, and its 2,3-regioisomer from the ring substituted ethoxyphenethylamines is possible after formation of the perfluoroacyl derivatives, pentafluoropropionamides (PFPA), and heptafluorobutyrylamides (HFBA). The ring substituted ethoxyphenethylamines constitute a unique set of compounds having an isobaric relationship with 3,4-MDMA. These isomeric forms of the 2-, 3-, and 4-ethoxy phenethylamines have mass spectra essentially equivalent to 3,4-MDMA; all have molecular weight of 193 and major fragment ions in their electron ionization mass spectra at m/z 58 and 135/136. All the side chain regioisomers of 2-ethoxy phenethylamine having equivalent mass spectra to 3,4-MDMA are synthesized and compared via gas chromatography-mass spectrometry to 2,3- and 3,4-methylenedioxymethamphetamine. The mass spectra for the perfluoroacyl derivatives of the primary and secondary amine regioisomers are significantly individualized, and the side chain regioisomers yield unique hydrocarbon fragment ions at m/z 148, 162, and 176. Additionally, the substituted ethoxymethamphetamines are distinguished from the methylenedioxymethamphet-amines via the presence of the m/z 107 ion. Gas chromatographic separation on relatively non-polar stationary phases successfully resolves these derivatives.  相似文献   

19.
Negative corona discharge atmospheric pressure chemical ionization (APCI) was used to investigate phenols with varying numbers of tert‐butyl groups using ion mobility spectrometry–mass spectrometry (IMS‐MS). The main characteristic ion observed for all the phenolic compounds was the deprotonated molecule [M–H]. 2‐tert‐Butylphenol showed one main mobility peak in the mass‐selected mobility spectrum of the [M–H] ion measured under nitrogen atmosphere. When air was used as a nebulizer gas an oxygen addition ion was seen in the mass spectrum and, interestingly, this new species [M–H+O] had a shorter drift time than the lighter [M–H] ion. Other phenolic compounds primarily produced two IMS peaks in the mass‐selected mobility spectra measured using the [M–H] ion. It was also observed that two isomeric compounds, 2,4‐di‐tert‐butylphenol and 2,6‐di‐tert‐butylphenol, could be separated with IMS. In addition, mobilities of various characteristic ions of 2,4,6‐trinitrotoluene were measured, since this compound was previously used as a mobility standard. The possibility of using phenolic compounds as mobility standards is also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This review covers applications of ion mobility spectrometry (IMS) hyphenated to mass spectrometry (MS) in the field of synthetic polymers. MS has become an essential technique in polymer science, but increasingly complex samples produced to provide desirable macroscopic properties of high‐performance materials often require separation of species prior to their mass analysis. Similar to liquid chromatography, the IMS dimension introduces shape selectivity but enables separation at a much faster rate (milliseconds vs minutes). As a post‐ionization technique, IMS can be hyphenated to MS to perform a double separation dimension of gas‐phase ions, first as a function on their mobility (determined by their charge state and collision cross section, CCS), then as a function of their m/z ratio. Implemented with a variety of ionization techniques, such coupling permits the spectral complexity to be reduced, to enhance the dynamic range of detection, or to achieve separation of isobaric ions prior to their activation in MS/MS experiments. Coupling IMS to MS also provides valuable information regarding the 3D structure of polymer ions in the gas phase and regarding how to address the question of how charges are distributed within the structure. Moreover, the ability of IMS to separate multiply charged species generated by electrospray ionization yields typical IMS‐MS 2D maps that permit the conformational dynamics of synthetic polymer chains to be described as a function of their length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号