首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present experiments on the propagation of a wave front in a fluid forced by Faraday waves. The vertical periodical modulation of the acceleration induces flows in the system that modifies the Belousov-Zhabotinsky (BZ) chemical reaction dynamics. Phase waves spreading through standing waves with different symmetries results in superdiffusion. The anomalous diffusion is characterized in terms of a non-integer transport exponent which is compared with exponents resulting from tracer particles trajectories undergoing rapid, distant jumps called Lévy flights.  相似文献   

2.
We introduce a short review of chemically driven convection together with a series of our experiments on hydrodynamic instabilities induced by chemical waves excited in the batch reactor of a Belousov-Zhabotinsky reaction. Several unresolved phenomena are picked out and possible mechanisms are discussed extensively. Interesting features of these phenomena can be summarized as being caused by the ‘global and dynamic hydrodynamic pattern induced by chemical waves’. These chemically induced global pattern of hydrodynamic phenomena may not be simply explained by the reaction-diffusion-convection model based on Marangoni instability (surface tension-driven convection), which produces only a localized structure of the convection pattern. Observed flow waves show global and dynamic patterns of convection that generate a functional structure associated with hierarchical patterns appearing in the reaction-diffusion-convection system. In particular, we clarify the existence of a continuous stream of hydrodynamic flow with growing amplitude and its rotating direction. We find that the flow does not stabilize to a motionless state until the system has self-collapsed. This new picture of the flow waves requires a revision of the reaction-diffusion-convection model. The established flow structure can be regarded as a mixing and/or transport process to supply the substrate from the peripheral region to the centre of the chemical waves to sustain the reaction. This characteristic may be a function of the hierarchical structure. A new mechanism for the viscous-elastic feature of the gas-liquid interface is discussed in order to understand these curious phenomena of interest.  相似文献   

3.
Experiments are presented on pattern formation in the Belousov-Zhabotinsky (BZ) reaction in a blinking vortex flow. Mixing in this flow is chaotic, with nearby tracers separating exponentially with time. The patterns that form in this flow with the BZ reaction mimic chaotic mixing structures seen in passive transport. The behavior is analyzed in terms of a mixing time taum and a characteristic decorrelation time TBZ for the BZ system. Flows with taum comparable to or smaller than TBZ generate large-scale patterns whose features are captured by simulations of mixing fields for the flow.  相似文献   

4.
We describe a novel nucleation mechanism of scroll rings in three-dimensional reaction-diffusion systems with anomalous dispersion. The vortices form after the collision of two spherical wave fronts from a third, trailing wave that only partially annihilates in the wake of its predecessor. Depending on the relative positions of the three relevant wave sources, one obtains untwisted or twisted scroll rings. The formation of both vortex structures is demonstrated for a modified Belousov-Zhabotinsky reaction.  相似文献   

5.
Sprial breakup in the Belousov-Zhabotinsky reaction has been observed under the influence of an externally applied alternating electric current. The dynamic mechanism of this breakup is explained in the framework of this reaction. The dependence of the critical electric current amplitude on the period of the wave and on the excitability of the medium is analyzed. Spiral breakup is shown to provide a limit of validity of electric-field-induced drift of vortices in excitable media. Experimental results are complemented with numerical simulations provided by two- and three-variable Oregonator models.  相似文献   

6.
We report experimental results on spiral and scroll waves in the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction. The propagating concentration waves are detected by two-dimensional photometry and optical tomography. Wave pulses can disappear in front-to-front and front-to-back collisions. This anomaly causes the nucleation of vortices from collisions of three nonrotating waves. In three-dimensional systems, these vortices are scroll rings that rotate around initially circular filaments. Depending on reactant concentrations, the filaments shrink or expand indicating positive and negative filament tensions, respectively. Shrinkage results in vortex annihilation. Expansion is accompanied by filament buckling and bending, which is interpreted as developing Winfree turbulence. We also describe the initiation of scroll ring pairs in four-wave collisions. The two filaments are stacked on top of each other and their motion suggests filament repulsion.  相似文献   

7.
We use a combination of numerical simulations and experiments to elucidate the structure of the flow of an electrically conducting fluid past a localized magnetic field, called magnetic obstacle. We demonstrate that the stationary flow pattern is considerably more complex than in the wake behind an ordinary body. The steady flow is shown to undergo two bifurcations (rather than one) and to involve up to six (rather than just two) vortices. We find that the first bifurcation leads to the formation of a pair of vortices within the region of magnetic field that we call inner magnetic vortices, whereas a second bifurcation gives rise to a pair of attached vortices that are linked to the inner vortices by connecting vortices.  相似文献   

8.
We observe N:(N-1)(N>/=2) frequency-locking phenomena of propagating wave fronts when increasing the light intensity in a spatially extended system. The experiments were carried out using the light-sensitive form of the Belousov-Zhabotinsky reaction with Ru(bpy)(2+)3 as a catalyst. By constructing a mapping function, the characteristic devil's staircase can be reproduced when plotting wave period versus light intensity, in agreement with the experimental data.  相似文献   

9.
采用计算流体力学的方法,对金融街地下交通工程通风系统的流场特性进行了数值分析,研究了各分系统流场的均匀特性、各通风管道内部流场细节和各分系统可靠性.结果表明:排风系统各风口的风速很不均匀,且高速风口处形成明显的气幕效应和旋涡区;在风道内形成明显的低速区.在送风系统中,各风口的风速基本均匀,风机的风压可满足要求;但在风道内也存在了明显的低速区或旋涡区.需要对该通风系统进行等风量设计,并对系统的内部气流组织进行改进设计,以提高通风系统的可靠性并降低能耗.  相似文献   

10.
This article investigates the effects of variable thermal conductivity and variable mass diffusion coefficient on the transport of heat and mass in the flow of Casson fluid. Numerical simulations for two-dimensional flow induced by stretching surface are performed by using Galerkin finite element method (GFEM) with linear shape functions. After assembly process, nonlinear algebraic equations are linearized through Picard method and resulting linear system is solved iteratively using Gauss Seidal method with simulation tolerance 10-8. Maximum value of independent variable η is searched through numerical experiments. Grid independent study was carried out and error analysis is performed. Simulated results are validated by comparing with already published results. Parametric study is carried out to explore the physics of the flow. The concentration increases when mass diffusion coefficient is increased. The concentration and thermal boundary layer thicknesses increase when ε1 and ε are increased. The effect of generative chemical reaction on concentration is opposite to the effect of destructive chemical reaction on the concentration.  相似文献   

11.
Vortex stretching in a compressible fluid is considered. Two-dimensional (2D) and axisymmetric cases are considered separately. The flows associated with the vortices are perpendicular to the plane of the uniform straining flows. Externally-imposed density build-up near the axis leads to enhanced compactness of the vortices — “dressed" vortices (in analogy to “dressed" charged particles in a dielectric system). The compressible vortex flow solutions in the 2D as well as axisymmetric cases identify a length scale relevant for the compressible case which leads to the Kadomtsev-Petviashvili spectrum for compressible turbulence. Vortex reconnection process in a compressible fluid is shown to be possible even in the inviscid case — compressibility leads to defreezing of vortex lines in the fluid.  相似文献   

12.
Charge transport in electrorheological fluids is studied experimentally under strongly nonequilibrium conditions. By injecting an electrical current into a suspension of conducting nanoparticles we are able to initiate a process of self-organization which leads, in certain cases, to formation of a stable pattern which consists of continuous conducting chains of particles. The evolution of the dissipative state in such a system is a complex process. It starts as an avalanche process characterized by nucleation, growth, and thermal destruction of such dissipative elements as continuous conducting chains of particles as well as electroconvective vortices. A power-law distribution of avalanche sizes and durations, observed at this stage of the evolution, indicates that the system is in a self-organized critical state. A sharp transition into an avalanche-free state with a stable pattern of conducting chains is observed when the power dissipated in the fluid reaches its maximum. We propose a simple evolution model which obeys the maximum power condition and also shows a power-law distribution of the avalanche sizes.  相似文献   

13.
An account of the experimental discovery of complex dynamical behavior in the continuous-flow, stirred tank reactor (CSTR) Belousov-Zhabotinsky (BZ) reaction, as well as numerical simulations based on the BZ chemistry are given. The most recent four- and three-variable models that are deduced from the well-accepted, updated chemical mechanism of the BZ reaction and which exhibit robust chaotic states are summarized. Chaos has been observed in experiments and simulations embedded in the regions of complexities at both low and high flow rates. The deterministic nature of the observed aperiodicities at low flow rates is unequivocally established. However, controversy still remains in the interpretation of certain aperiodicities observed at high flow rates.  相似文献   

14.
We investigated methods to fabricate distinctive structures on silicon and sapphire substrates to grow a carbon nanotube (CNT) network using a solution from the Belousov-Zhabotinsky (BZ) reaction. The BZ reaction is a chemical system where chemical reactions and material diffusion coexist in a nonequilibrium state and generate spatiotemporal patterns in a petri dish. Precipitates from the reaction should also produce distinctive structures after being piled on the substrates. The structures have metal particles that act as catalysts for growing CNTs or quantum dots of nanodot devices. Therefore, such structures should be suitable to fabricate three-dimensional CNT networks or nanodot devices. To confirm this, we investigated the fabrication of distinctive structure using a BZ reaction solution. Results indicated that the BZ reaction solution produced interesting structures on the substrates. Moreover, we confirmed that the shape of the structure changed when the substrate used was changed. We believe that the developed methods are suitable to fabricate nanodevices, especially CNT network devices.  相似文献   

15.
Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.  相似文献   

16.
In this paper, we summarize our recent experimental and theoretical works on observation and control of scroll wave (SW) turbulence. The experiments were conducted in a three-dimensional Belousov-Zhabotinsky reaction-diffusion system with chemical concentration gradients in one dimension. A spatially homogeneous external forcing was used in the experiments as a control; it was realized by illuminating white light on the light sensitive reaction medium. We observed that, in the oscillatory regime of the system, SW can appear automatically in the gradient system, which will be led to spatiotemporal chaos under certain conditions. A suitable periodic forcing may stabilize inherent turbulence of SW. The mechanism of the transition to SW turbulence is due to the phase twist of SW in the presence of chemical gradients, while modulating the phase twist with a proper periodic forcing can delay this transition. Using the FitzHugh-Nagumo model with an external periodic forcing, we confirmed the control mechanism with numerical simulation. Moreover, we also show in the simulation that adding temporal external noise to the system may have the same control effect. During this process, we observed a new state called "intermittent turbulence," which may undergo a transition into a new type of SW collapse when the noise intensity is further increased. The intermittent state and the collapse could be explained by a random process.  相似文献   

17.
Numerical simulation and visualization are performed to investigate the developing processes of flows between two concentric rotating cylinders. The length of the cylinders is finite and the end walls are fixed. Initially the fluid is at rest, and the inner cylinder suddenly begins to rotate. Various flow modes appear in this flow. Developments of the flow to these modes are examined and the physical explanation for the transient process is presented. The processes are classified into some types. At low Reynolds numbers, vortices begin to grow on end walls. When the Reynolds number is higher, the centrifugal instability brings first vortices around the mid-plane in the axial direction. Some final modes are established via an intermediate mode, and some other modes are attained after merging and vanishing of vortices.  相似文献   

18.
The dynamic evolution of a chemical reaction-diffusion pattern and its interaction with hydrodynamic flow is investigated by two-dimensional velocimetry and spectrophotometry based on microscope video imaging techniques. Oscillatory deformation and turbulent decomposition of chemical wave fronts are observed which are induced by a pronounced oscillatory flow excited spontaneously in a Belousov-Zhabotinsky solution layer with a free surface.  相似文献   

19.
We describe an algorithm for simulating reactive flows in porous media, in which the pore space is mapped explicitly. Chemical reactions at the solid–fluid boundaries lead to dissolution (or precipitation), which makes it necessary to track the movement of the solid–fluid interface during the course of the simulation. We have developed a robust algorithm for constructing a piecewise continuous (C1) surface, which enables a rapid remapping of the surface to the grid lines. The key components of the physics are the Navier–Stokes equations for fluid flow in the pore space, the convection–diffusion equation to describe the transport of chemical species, and rate equations to model the chemical kinetics at the solid surfaces. A lattice-Boltzmann model was used to simulate fluid flow in the pore space, with linear interpolation at the solid boundaries. A finite-difference scheme for the concentration field was developed, taking derivatives along the direction of the local fluid velocity. When the flow is not aligned with the grid this leads to much more accurate convective fluxes and surface concentrations than a standard Cartesian template. A robust algorithm for the surface reaction rates has been implemented, avoiding instabilities when the surface is close to a grid point. We report numerical tests of different aspects of the algorithm and assess the overall convergence of the method.  相似文献   

20.
The main emphasis of this article is to examine the peristaltic transport of magnetohydrodynamic (MHD) Prandtl-Eyring nanofluid in an inclined symmetric channel with compliant walls. Nanofluid including thermophoresis and Brownian motion is taken into account. Two-dimensional governing equations for the peristaltic motion of Prandtl-Eyring nanofluid are modeled in the presence of chemical reaction. The resulting dimensionless nonlinear system is numerically solved for velocity, temperature, and concentration. The effects of various dimensionless parameters on fluid flow are featured through graphs. This analysis reveals that the influence of wall tension and wall mass parameters on axial velocity are increasing whereas the impact of wall damping parameter on velocity is decaying. The opposite effect of thermophoresis parameter and Brownian motion parameter on both temperature and heat transfer coefficient are observed. The destructive chemical reaction causes decay in temperature, nanoparticle concentration, and heat transfer coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号