首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the energy band structure of the superfluid flow of ultracold dilute Fermi gases in a one-dimensional optical lattice along the BCS to Bose-Einstein condensate (BEC) crossover within a mean-field approach. In each side of the crossover region, a loop structure (swallowtail) appears in the Bloch energy band of the superfluid above a critical value of the interaction strength. The width of the swallowtail is largest near unitarity. Across the critical value of the interaction strength, the profiles of density and pairing field change more drastically in the BCS side than in the BEC side. It is found that along with the appearance of the swallowtail, there exists a narrow band in the quasiparticle energy spectrum close to the chemical potential, and the incompressibility of the Fermi gas consequently experiences a profound dip in the BCS side, unlike in the BEC side.  相似文献   

2.
We consider a gas of cold fermionic atoms having two spin components with interactions characterized by their s-wave scattering length a. At positive scattering length the atoms form weakly bound bosonic molecules which can be evaporatively cooled to undergo Bose-Einstein condensation, whereas at negative scattering length BCS pairing can take place. It is shown that, by adiabatically tuning the scattering length a from positive to negative values, one may transform the molecular Bose-Einstein condensate into a highly degenerate atomic Fermi gas, with the ratio of temperature to Fermi temperature T/T(F) approximately 10(-2). The corresponding critical final value of k(F)/a/, which leads to the BCS transition, is found to be about one-half, where k(F) is the Fermi momentum.  相似文献   

3.
罗学兵  周可召  张志东 《中国物理 B》2016,25(11):110306-110306
We use the path-integral formalism to investigate the vortex properties of a quasi-two dimensional(2D) Fermi superfluid system trapped in an optical lattice potential.Within the framework of mean-field theory,the cooper pair density,the atom number density,and the vortex core size are calculated from weakly interacting BCS regime to strongly coupled while weakly interacting BEC regime.Numerical results show that the atoms gradually penetrate into the vortex core as the system evolves from BEC to BCS regime.Meanwhile,the presence of the optical lattice allows us to analyze the vortex properties in the crossover from three-dimensional(3D) to 2D case.Furthermore,using a simple re-normalization procedure,we find that the two-body bound state exists only when the interaction is stronger than a critical one denoted by G_c which is obtained as a function of the lattice potential's parameter.Finally,we investigate the vortex core size and find that it grows with increasing interaction strength.In particular,by analyzing the behavior of the vortex core size in both BCS and BEC regimes,we find that the vortex core size behaves quite differently for positive and negative chemical potentials.  相似文献   

4.
We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamics of superfluid Fermi gases in multi-well system are obtained numerically. We find that the self-trapping to diffusion transition strongly depends on the well number. When the well number is less than three, the self-trapped state takes place easier on the BEC side than that on the BCS side. However, when the well number is larger than three, the self-trapped state takes place easier on the BCS side instead of the BEC side. Furthermore, by considering a superfluid of 40K atoms, we obtain the zero-mode and π-mode Josephson frequencies of coherent atomic oscillations in double-well system. It is noteworthy that the Josephson mode, especially, the existence of π-mode frequency strongly depends on the atoms number on the BCS side.  相似文献   

5.
6.
We investigate here the Cooper pairing of fermionic atoms with mismatched Fermi surfaces using a variational construct for the ground state. We determine the state for different values of the mismatch of chemical potential for weak as well as strong coupling regimes including the BCS BEC cross over region. We consider Cooper pairing with both zero and finite net momentum. Within the variational approximation for the ground state and comparing the thermodynamic potentials, we show that (i) the LOFF phase is stable in the weak coupling regime; (ii) the LOFF window is maximum on the BEC side near the Feshbach resonance; and (iii) the existence of stable gapless states with a single Fermi surface for negative average chemical potential on the BEC side of the Feshbach resonance.  相似文献   

7.
On the basis of quantum hydrodynamical equations we derive a unitarity Schrödinger equation of a finite trapped superfluid Fermi gas valid in the whole interaction regime from BCS superfluid to BEC. This equation is just the Ginzburg-Laudau-type equation for the fermionic Cooper pairs in the BCS side, the Gross-Pitaevskii-type equation for the bosonic dimers in the BEC side, and a unitarity equation for a strongly interacting Fermi superfluid in the unitarity limit. By taking a modified Gauss-like trial wave function, we solve the unitarity Schrödinger equation, calculate the energy, chemical potential, sizes and profiles of the ground-state condensate, and discuss the properties of the ground state in the entire BCS-BEC crossover regimes.  相似文献   

8.
We have observed condensation of fermionic atom pairs in the BCS-BEC crossover regime. A trapped gas of fermionic 40K atoms is evaporatively cooled to quantum degeneracy and then a magnetic-field Feshbach resonance is used to control the atom-atom interactions. The location of this resonance is precisely determined from low-density measurements of molecule dissociation. In order to search for condensation on either side of the resonance, we introduce a technique that pairwise projects fermionic atoms onto molecules; this enables us to measure the momentum distribution of fermionic atom pairs. The transition to condensation of fermionic atom pairs is mapped out as a function of the initial atom gas temperature T compared to the Fermi temperature T(F) for magnetic-field detunings on both the BCS and BEC sides of the resonance.  相似文献   

9.
The crossover from Bardeen–Cooper–Schrieffer (BCS) superfluid with singlet pairs to Bose–Einstein condensation (BEC) of molecules is studied in one dimension. By use of the nested Bethe ansatz method, the ground state properties of spin-1/2 fermions interacting through attractive δ-function are analyzed explicitly for strong and weak couplings. Based on those results, we confirm a crossover picture, that is, in the BEC regime (strong couplings) the system is described by molecules with weak repulsion while in the BCS regime (weak couplings) it behaves as the weakly attractive fermions.  相似文献   

10.
The influence of correlations on the critical temperature and density for the onset of superfluidity in nuclear matter is investigated within the scheme of Nozières and Schmitt-Rink [1]. For symmetric nuclear matter a smooth transition from Bose-Einstein condensation (BEC) of deuteronlike bound states at low densities and low temperatures to Bardeen-Cooper-Schrieffer (BCS) pairing at higher densities is described. Compared with the mean field approach a lowering of the critical temperature is obtained for symmetric nuclear matter as well as for pure neutron matter. The Mott transition in symmetric nuclear matter is discussed. Regions in the temperature-density plane are identified where correlated pairs give the main contribution to the composition of the system, so that approximations beyond the quasi-particle picture are requested.  相似文献   

11.
Superconductivity could be seen as a Bose-Einstein condensation (BEC) of Cooper pairs. However, the creation and annihilation operators of Cooper pairs do not satisfy the bosonic commutation relations and then, the mentioned viewpoint has a weakness in its foundation. In this work, we introduce the concept of collective Cooper pairs (CCP) as linear combinations of Cooper pairs and prove their bosonic nature at the dilute limit. This bosonic nature is given rise from their diffuse character on the Cooper pairs, which permits the accumulation of many collective pairs at a single quantum state. Moreover, the superconducting ground state proposed by Bardeen, Cooper and Schrieffer (BCS) can be written in terms of these collective Cooper pairs, which means that the BCS theory is consistent with a possible BEC theory of superconductivity based on collective Cooper pairs. Finally, we calculate the energy spectra and the BEC critical temperature of CCP.  相似文献   

12.
We consider the evolution of superfluid properties of a three-dimensional p-wave Fermi gas from a weak coupling Bardeen-Cooper-Schrieffer (BCS) to strong coupling Bose-Einstein condensation (BEC) limit as a function of scattering volume. At zero temperature, we show that a quantum phase transition occurs for p-wave systems, unlike the s-wave case where the BCS to BEC evolution is just a crossover. Near the critical temperature, we derive a time-dependent Ginzburg-Landau (GL) theory and show that the GL coherence length is generally anisotropic due to the p-wave nature of the order parameter, and becomes isotropic only in the BEC limit.  相似文献   

13.
We investigate the formation of Cooper pairs, bound dimers and the dimer‐dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two‐molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non‐zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer‐dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS‐BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama.  相似文献   

14.
A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the Bose-Einstein condensation (BEC) sides, thus "projecting" the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of the mean field.  相似文献   

15.
Nonrelativistic nuclear matter is considered as a special example of a many-particle system. Quantum statistical methods are applied to treat the formation and dissolution of bound states in dense matter. The formation of quantum condensates is investigated. Special aspects are the transition from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer (BCS) pairing as well as the occurrence of quartetting. Consequences for the structure of nuclei are compared with experimental data. Exercises to illustrate the main features of in-medium effects in nuclear matter are given. The text was submitted by the author in English.  相似文献   

16.
柏小东  刘锐涵  刘璐  唐荣安  薛具奎 《物理学报》2010,59(11):7581-7585
研究了一维光晶格中超流Fermi气体基态解的性质.在平均场理论框架下,利用超流Fermi体系中原子间相互作用能与晶格势能相互平衡的条件,得到了一维光晶格中超流Fermi气体在整个BEC-BCS跨越区的一组基态解,给出了基态的原子数密度空间分布、总原子数和能量.进一步对系统从BEC端转变到BCS端时的基态解性质进行了深入分析和对比.结果表明,一维光晶格中超流Fermi气体基态分布具有一些特殊的性质,由于Fermi压力,相比而言超流Fermi气体在BCS端的基态原子数密度空间分布较为扩展,平均能量明显偏高.  相似文献   

17.
The equation of state (EOS) of a Fermi superfluid is investigated in the BCS-BEC crossover at zero temperature. We discuss the EOS based on Monte Carlo (MC) data and asymptotic expansions and the EOS derived from the extended BCS (EBCS) mean-field theory. Then we introduce a time-dependent density functional, based on the bulk EOS and Landau’s superfluid hydrodynamics with a von Weizsäcker-type correction, to study the free expansion of the Fermi superfluid. We calculate the aspect ratio and the released energy of the expanding Fermi cloud showing that MC EOS and EBCS EOS are both compatible with the available experimental data of 6Li atoms. We find that the released energy satisfies and approximate analytical formula that is quite accurate in the BEC regime. For an anisotropic droplet, our numerical simulations show an initially faster reversal of anisotropy in the BCS regime, later suppressed by the BEC fluid.  相似文献   

18.
19.
An upper bound is derived for Delta for a cold dilute fluid of equal amounts of two species of fermion in the unitary limit k(f)a--> infinity (where k(f) is the Fermi momentum, a is the scattering length, and Delta is a pairing energy: the difference in energy per particle between adding to the system a macroscopic number (but infinitesimal fraction) of particles of one species compared to adding equal numbers of both. The bound is delta < or =5/3 [2(2xi)(2/5)-(2xi)] where xi=epsilon/epsilon(FG), delta=2Delta/epsilon(FG); epsilon is the energy per particle and epsilon(FG) is the energy per particle of a noninteracting Fermi gas. If the bound is saturated, then systems with unequal densities of the two species will separate spatially into a superfluid phase with equal numbers of the two species and a normal phase with the excess. If the bound is not saturated, then Delta is the usual superfluid gap. If the superfluid gap exceeds the maximum allowed by the inequality, phase separation occurs.  相似文献   

20.
We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to Bose-Einstein condensation (BEC) in a two-dimensional Fermi gas at T=0 using the fixed-node diffusion Monte?Carlo method. We calculate the equation of state and the gap parameter as a function of the interaction strength, observing large deviations compared to mean-field predictions. In the BEC regime our results show the important role of dimer-dimer and atom-dimer interaction effects that are completely neglected in the mean-field picture. Results on Tan's contact parameter associated with short-range physics are also reported along the BCS-BEC crossover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号