首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We study the quantum phases of anisotropic XY spin chain in presence and absence of adiabatic quench. A connection between geometric phase and criticality is established from the dynamical behavior of the geometric phase for a quench induced quantum phase transition in a quantum spin chain. We predict XX criticality associated with a sequence of non-contractible geometric phases.  相似文献   

2.
In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain.  相似文献   

3.
We present a general formulation of Floquet states of periodically time-dependent open Markovian quasifree fermionic many-body systems in terms of a discrete Lyapunov equation. Illustrating the technique, we analyze periodically kicked XY spin-? chain which is coupled to a pair of Lindblad reservoirs at its ends. A complex phase diagram is reported with reentrant phases of long range and exponentially decaying spin-spin correlations as some of the system's parameters are varied. The structure of phase diagram is reproduced in terms of counting nontrivial stationary points of Floquet quasiparticle dispersion relation.  相似文献   

4.
Under successive renormalization group transformations applied to a quantum state |Psi of finite correlation length xi, there is typically a loss of entanglement after each iteration. How good it is then to replace |Psi by a product state at every step of the process? In this Letter we give a quantitative answer to this question by providing first analytical and general proofs that, for translationally invariant quantum systems in one spatial dimension, the global geometric entanglement per region of size L>xi diverges with the correlation length as (c/12)log(xi/epsilon) close to a quantum critical point with central charge c, where is a cutoff at short distances. Moreover, the situation at criticality is also discussed and an upper bound on the critical global geometric entanglement is provided in terms of a logarithmic function of L.  相似文献   

5.
Using quantization in the Fock space of operators, we compute the nonequilibrium steady state in an open Heisenberg XY spin 1/2 chain of a finite but large size coupled to Markovian baths at its ends. Numerical and theoretical evidence is given for a far-from-equilibrium quantum phase transition with the spontaneous emergence of long-range order in spin-spin correlation functions, characterized by a transition from saturation to linear growth with the size of the entanglement entropy in operator space.  相似文献   

6.
We consider a qubit symmetrically and transversely coupled to an XY spin chain with Dzyaloshinsky-Moriya(DM) interaction in the presence of a transverse magnetic field.An analytical expression for the geometric phase of the qubit is obtained in the weak coupling limit.We find that the modification of the geometrical phase induced by the spin chain environment is greatly enhanced by DM interaction in the weak coupling limit around the quantum phase transition point of the spin chain.  相似文献   

7.
单传家 《物理学报》2012,61(22):51-55
本文首先对具有三体相互作用的一维自旋链系统的哈密顿量进行了对角化.然后通过一个旋转操作求解了系统基态的几何相位,通过数值计算几何相位及其导数随外界参数的变化,考虑三体相互作用对几何相位以及量子相变的影响,结果表明几何相位可以很好的用来表征该系统中的量子相变,并且发现三体相互作用不但引起相变点平移,而且可以产生新的临界点.  相似文献   

8.
We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study of properties of quantum correlations in different quantum phases.  相似文献   

9.
张爱萍  李福利 《中国物理 B》2013,22(3):30308-030308
We consider a qubit symmetrically and transversely coupled to an XY spin chain with Dzyaloshinsky-Moriya (DM) interaction in the presence of a transverse magnetic field. An analytical expression for the geometric phase of the qubit is obtained in the weak coupling limit. We find that the modification of the geometrical phase induced by the spin chain environment is greatly enhanced by the DM interaction in the weak coupling limit around the quantum phase transition point of the spin chain.  相似文献   

10.
We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can efficiently detect the quantum critical point in the two-dimensional XY systems. The nonanalytic behavior of the first derivative of quantum correlation is observed at the critical point as the size of the model increases. Furthermore, we discuss the quantum correlation distribution in this system based on the square of concurrence(SC) and square of quantum discord(SQD). The monogamous properties of SC and SQD are obtained. Particularly, we prove that the quantum critical point can also be achieved by monogamy score.  相似文献   

11.
By means of the Loschmidt Echo (LE) and Berry Phase (BP) calculations, quantum phase transition (QPT) of an XY spin chain with three-site interaction (α) in a transverse magnetic field (λ) is studied. Both the LE and BP?s λ derivative present anomaly behaviors at the critical regions λ1,λ2 and λ3. The model is in the Ferromagnetic phase as λ>λ1=1+α and in the Spin Liquid I phase as −1+α<λ<1+α. λ1 and λ2 are independent on the anisotropy parameter γ. But, the anisotropy interaction can shift the critical line λ3 between the Spin Liquid II phase and the Ferromagnetic phase. The present work suggests that QPT of the XY spin chain with three-site interaction can be characterized by exploring the dynamical behaviors of the LE and BP.  相似文献   

12.
The dynamical responses of XY ferromagnet driven by linearly polarised propagating and standing magnetic field wave have been studied by Monte Carlo simulation in three dimensions. In the case of propagating magnetic field wave (with specified amplitude, frequency and the wavelength), the low temperature dynamical mode is a propagating spin wave and the system becomes structureless (or random) in the high temperature. A dynamical symmetry breaking phase transition is observed at a finite (non-zero) temperature. This symmetry breaking is confirmed by studying the statistical distribution of the angle of the spin vector. The dynamic non-equilibrium transition temperature was found to decrease as the amplitude of the propagating magnetic field wave increased. A comprehensive phase boundary is drawn in the plane formed by temperature and amplitude of propagating field wave. The phase boundary was observed to shrink (in the low temperature side) for longer wavelength of the propagating magnetic wave. In the case of standing magnetic field wave, the low temperature excitation is a standing spin wave which becomes structureless (or random) in the high temperature. Here also, like the case of propagating magnetic wave, a dynamical symmetry breaking non-equilibrium phase transition was observed. A comprehensive phase boundary was drawn. Unlike the case of propagating magnetic wave, the phase boundary does not show any systematic variation with the wavelength of the standing magnetic field wave. In the limit of vanishingly small amplitude of the field, the phase boundaries approach the recent Monte Carlo estimate of equilibrium transition temperature.  相似文献   

13.
14.
By using the method of density-matrix renormalization-group to solve the different spin spin correlation functions, the nearest-neighbouring entanglement (NNE) and the next-nearest-neighbouring entanglement (NNNE) of one-dimensional alternating Heisenberg XY spin chain are investigated in the presence of alternating the-nearestneighbouring interaction of exchange couplings, external magnetic fields and the next-nearest neighbouring interaction. For a dimerised ferromagnetic spin chain, the NNNE appears only above a critical dimerized interaction, meanwhile, the dimerized interaction a effects a quantum phase transition point and improves the NNNE to a large extent. We also study the effect of ferromagnetic or antiferromagnetic next-nearest neighbouring (NNN) interaction on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction increases and shrinks the NNE below and above a critical frustrated interaction respectively, while the antiferromagnetic NNN interaction always reduces the NNE. The antiferromagnetic NNN interaction results in a large value of NNNE compared with the case where the NNN interaction is ferromagnetic.  相似文献   

15.
R. Jafari 《Physics letters. A》2013,377(45-48):3279-3282
A relation between geometric phases and criticality of spin chains are studied using the quantum renormalization-group approach. I have shown how the geometric phase evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. The renormalization scheme demonstrates how the first derivative of the geometric phase with respect to the field strength diverges at the critical point and maximum value of the first derivative, and its position, scales with the exponent of the system size.  相似文献   

16.
B. Basu 《Physics letters. A》2010,374(10):1205-4824
The geometric phase associated with a many body ground state exhibits a signature of quantum phase transition. In this context, we have studied the behavior of the geometric phase during a linear quench caused by a gradual turning off of the magnetic field interacting with a spin chain.  相似文献   

17.
18.
The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.  相似文献   

19.
Kaiyuan Cao 《中国物理 B》2022,31(6):60505-060505
We study the dynamical quantum phase transitions (DQPTs) in the $XY$ chains with the Dzyaloshinskii-Moriya interaction and the $XZY$-$YZX$ type of three-site interaction after a sudden quench. Both the models can be mapped to the spinless free fermion models by the Jordan-Wigner and Bogoliubov transformations with the form $H=\sum_{k}ǎrepsilon_{k}(\eta^{†}_{k}\eta_{k}-\frac{1}{2})$, where the quasiparticle excitation spectra $ǎrepsilon_{k}$ may be smaller than 0 for some $k$ and are asymmetrical ($ǎrepsilon_{k}\neqǎrepsilon_{-k}$). It is found that the factors of Loschmidt echo equal 1 for some $k$ corresponding to the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfying $ǎrepsilon_{k}\cdotǎrepsilon_{-k}<0$, when the quench is from the gapless phase. By considering the quench from different ground states, we obtain the conditions for the occurrence of DQPTs for the general $XY$ chains with gapless phase, and find that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from the gapped phase to gapless phase. This is different from the DQPTs in the case of quench from the gapped phase to gapped phase, in which the DQPTs will always appear. Moreover, we analyze the different reasons for the absence of DQPTs in the quench from the gapless phase and the gapped phase. The conclusion can also be extended to the general quantum spin chains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号