首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a murine model of systemic lupus erythematosus (SLE)-like chronic graft-versus-host disease (cGVHD), donor CD8+ T cells rapidly fall into anergy to host cells, while donor CD4+ T cells hyperactivate B cells and break B-cell tolerance to self-Ags in the recipient mouse. The functional recovery of donor CD8+ T cells can result in the conversion of cGVHD to acute GVHD (aGVHD), indicating that donor CD8+ T-cell anergy is a restriction factor in the development of cGVHD. In this report, we present evidence that donor CD4+CD25+ regulatory T cells (Treg cells) are critical in maintaining the donor CD8+ T-cell anergy and thus suppressing the development of aGVHD in mice that are naturally prone to cGVHD. Our results provide a novel insight into the role of Treg cells in determining cGVHD versus aGVHD.  相似文献   

2.
Designing adjuvants that can induce strong cytotoxic T cell responses is largely required for preparing DNA vaccines. In this study we explored dual costimulatory molecules 4-1BBL and OX40L as adjuvants to improve the efficiency of the HIV multiple-epitope DNA vaccine. When explored in the human dendritic cell-T cell based coculture system,dual costimulatory molecules significantly enhanced the anti-HIV T cell response of the HIV mul-tiple-epitope DNA vaccine,as detected by intracellular cytokine staining t...  相似文献   

3.
4-1BB, a transmembrane molecule, member of the tumor necrosis factor receptor superfamily, is an important costimulatory molecule in the immune response, plays a key role in the clonal expansion and survival of CD8(+) T cells. In this study, we investigated 4-1BB regulation of CD4(+) T cell responses using 4-1BB transgenic (TG) mice that constitutively expressed 4-1BB on mature T cells. We first showed that CD4(+) T cells of 4-1BB TG mice had more sustained proliferative capacity in response to TCR/4-1BB stimulation in vitro compared to WT mice. Secondly, 4-1BB TG mice exhibited a more elevated contact hypersensitivity (CHS) response mediated by CD4+ Th1 cells due to more vigorous expansion of and apoptotic inhibition of CD4(+) T cells. Finally, CD4(+) T cells of 4-1BB TG mice had a heightened capacity for T cell priming. Overall, our results demonstrate the involvement of 4-1BB in CD4(+) Th1 cell responses by regulating the clonal expansion and survival of CD4(+) T cells as seen in CD8(+) T cells.  相似文献   

4.
We have reported previously that low-dose UVB radiation (UVBR, 50-200 J/m2) perturbs the antigen-presenting cell (APC) function of murine Langerhans cells (LC) by interfering with yet undefined costimulatory signals. In this study, we investigated (1) the effects of UVBR on the expression of the costimulatory molecules B7-1 and B7-2 on murine LC, (2) the functional consequences of defective B7-1 and B7-2 signalling on primary and secondary T-cell responses induced by LC and (3) the mechanism by which UVBR interferes with B7-1 and B7-2 expression. Ultraviolet-B radiation dose-dependently inhibited the culture-induced upregulation of B7-1 and B7-2 on LC from both UVB-susceptible (UVBs, C57BL/6) and UVB-resistant (UVBR, Balb/c) mice and abrogated their capacity to stimulate proliferation of naive alloreactive T cells and of the KLH (keyhole limpet hemocyanin)-specific T helper (Th)1 clone HDK-1. The UVBR-induced suppression of B7-1 and B7-2 on LC and their perturbed APC function were related, because exogenous triggering of the B7/CD28 pathway with a stimulatory monoclonal antibody (mAb) for CD28 to UVB-irradiated LC partially restored T-cell proliferation. Such reconstitution was not observed when the mAb was added to killed LC, indicating that the UVBR-induced suppression of APC function was not due to lethal effects on LC. Conditioned supernatants from UVB-irradiated epidermal cells did not inhibit the functional upregulation of B7-1 and B7-2, suggesting that UVBR inhibits B7-1 and B7-2 upregulation by acting directly on LC and not by altering LC costimulatory function via release of soluble immunosuppressive factors. In conclusion, UVBR distorts the functional expression of B7-1 and B7-2 on LC from both UVBs and UVBR mice, thereby contributing to the failure of UVB-irradiated LC to stimulate resting alloreactive T cells or KLH-specific Thl cells.  相似文献   

5.
One of the most explored strategies to cure neurological disorders is the transplantation of stem cells and their derived products. Different stem cells, as well as their extracellular vesicles (EV), modified or not, have been administrated in a large array of preclinical neurological disorder models. EV represent the hope of a “cell-free” therapy that would combine the therapeutic potential of stem cells without their drawbacks. Stem cells and EV showed various degrees of efficiency but, overall, provided benefits and improvements. The administration route has a considerable impact on stem cell and EV safety and therapeutic effect. However, despite evidences of preclinical success, the different strategies developed based on stem cells to treat neurological disorders do not exactly recapitulate in clinical trials. Discrepancies between preclinical and clinical experimental conditions and settings, cell availability and difficulties to scale up and to produce cells and EV in a Good Manufacturing Practices (GMP) environment limit translation.  相似文献   

6.
We previously reported that translocation of mitochondria from the oocyte cortex to the perinuclear area indicates positive developmental potential that was reduced in porcine somatic cell nuclear transfer (SCNT) embryos compared to in vitro220.). The present study is focused on distribution of donor cell mitochondria in intraspecies (pig oocytes; pig fetal fibroblast cells) and interspecies (pig oocytes; mouse fibroblast cells) reconstructed embryos by using either pig fibroblasts with mitochondria-stained MitoTracker CMXRos or YFP-mitochondria 3T3 cells (pPhi-Yellow-mito) as donor cells. Transmission electron microscopy was employed for ultrastructural analysis of pig oocyte and donor cell mitochondria. Our results revealed donor cell mitochondrial clusters around the donor nucleus that gradually dispersed into the ooplasm at 3 h after SCNT. Donor-derived mitochondria distributed into daughter blastomeres equally (82.8%) or unequally (17.2%) at first cleavage. Mitochondrial morphology was clearly different between donor cells and oocytes in which various complex shapes and configurations were seen. These data indicate that (1) unequal donor cell mitochondria distribution is observed in 17.2% of embryos, which may negatively influence development; and (2) complex mitochondrial morphologies are observed in IVF and SCNT embryos, which may influence mitochondrial translocation and affect development.  相似文献   

7.
8.
IL-17-producing CD4+ T cells (Th17) play important functions in autoimmune diseases and allograft rejection of solid organs. We examined the effects of IL 17 and its mechanism of action on arthritis in a murine collagen-induced arthritis (CIA) model using bone marrow transplantation (BMT) system. DBA/1J mice were administered a lethal radiation dose and then rescued with bone marrow derived from either wild-type (WT) or IL-17-/- mice on C57BL/6 background mice. CIA was induced after the bone marrow transplant, and disease progression was characterized. DBA/1J mice with CIA that received IL-17-/- donor bone marrow showed potently inhibited development and severity of clinical arthritis as compared with CIA mice that received WT bone marrow. Reduced secretion of the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6, and collagen-specific T cell responses were observed in mice that received IL-17-/- bone marrow. IL-17 blockade also inhibited effector T cell proliferation by reciprocally regulating the Treg/Th17 ratio. IL-17 blockade prevented joint destruction in mice with CIA. These findings suggest that CIA with BMT is a viable method of immunological manipulation and that IL-17 deficiency suppresses severe joint destruction and inflammation in CIA mice. There may be clinical benefits in blocking IL-17 and BMT in the treatment of rheumatoid arthritis.  相似文献   

9.
βCDPEG5 and βCDPEG2 are two derivatives comprising seven PEG linear chains of 5 and 2 kDa, respectively, conjugated to βCD. As βCDPEGs display different physicochemical properties than their precursors, they could also trigger distinct cellular responses. To investigate the biological behavior of βCDPEGs in comparison to their parent compounds, we performed broad toxicological assays on RAW 264.7 macrophages, MC3T3-E1 osteoblasts, and MDCK cells. By analyzing ROS and NO2 overproduction in macrophages, we found that βCDPEGs induced a moderate stress response without affecting cell viability. Although MC3T3-E1 osteoblasts were more sensitive than MDCK cells to βCDPEGs and the parent compounds, a similar pattern was observed: the effect of βCDPEG5 on cell viability and cell cycle progression was larger than that of βCDPEG2; PEG2 affected cell viability and cell cycle more than βCDPEG2; cell post-treatment recovery was favorable in all cases, and the compounds had similar behaviors regarding ROS generation. The effect on MDCK cell migration followed a similar pattern. In contrast, for osteoblasts, the interference of βCDPEG5 with cell migration was smaller than that of βCDPEG2; likewise, the effect of PEG2 was shorter than its conjugate. Overall, the covalent conjugation of βCD and PEGs, particularly to yield βCDPEG2, improved the biocompatibility profile, evidencing that a favorable biological response can be tuned through a thoughtful combination of materials. Moreover, this is the first time that an in vitro evaluation of βCD and PEG has been presented for MC3T3-E1 and MDCK cells, thus providing valuable knowledge for designing biocompatible nanomaterials constructed from βCD and PEGs.  相似文献   

10.
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT.  相似文献   

11.
Costimulatory molecules are important regulators of T cell activation and thus favored targets for therapeutic manipulation of immune responses. One of the key costimulatory receptors is CD80, which binds the T cell ligands, CD28, and CTLA-4. We describe a set of small compounds that bind with high specificity and low nanomolar affinity to CD80. The compounds have relatively slow off-rates and block both CD28 and CTLA-4 binding, implying that they occlude the shared ligand binding site. The compounds inhibit proinflammatory cytokine release in T cell assays with submicromolar potency, and as such, they represent promising leads for the development of novel therapeutics for immune-mediated inflammatory disease. Our results also suggest that other predominantly beta proteins, such as those that dominate the cell surface, may also be accessible as potentially therapeutic targets.  相似文献   

12.
Legionella bacterium, an intracellular pathogen of mononuclear phagocytes, causes acute fatal pneumonia, especially in patients with impaired cellular immune responses. Until recently, however, the toll-like receptor (TLR) engagement of bacterial proteins derived from Legionella is uncertain. We previously showed that a 19-kDa highly conserved peptidoglycan-associated lipoprotein (PAL) of Legionella pneumophila induced the PAL-specific B cell and T cell responses in mice. In this study, we observed that the rPAL antigen of L. pneumophila, as an effector molecule, activated murine macrophages via TLR2 and produced proinflammatory cytokines such as IL-6 and TNF-α. In both BALB/c and TLR4-deficient C3H/HeJ mice, pretreatment of macrophages with anti-TLR2 mAb showed severely impaired cytokine production in response to the rPAL. In addition, in vitro the rPAL treatment increased the cell surface expression of CD40, CD80, CD86 and MHC I/II molecules. We further showed that the synthetic CpG-oligodeoxynucleotides (CpG ODN) coadministered with the rPAL enhanced IL-12 and IL-6 production and expression of CD40, CD80 and MHC II compared to the rPAL treatment alone. In conclusions, these results indicate that Legionella PAL might activate macrophages via a TLR2-dependent mechanism which thus induce cytokine production and expression of costimulatory and MHC molecules.  相似文献   

13.
A double B←N bridged bipyridyl (BNBP) is a novel electron‐deficient building block for polymer electron acceptors in all‐polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low‐lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P‐BNBP‐T) exhibits high electron mobility, low‐lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all‐polymer solar cell (all‐PSC) devices with P‐BNBP‐T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38 %, which is among the highest values of all‐PSCs with PTB7 as the electron donor.  相似文献   

14.
We report a Förster resonance energy transfer (FRET)-based imaging ensemble for the visualization of membrane potential in living cells. A water-soluble poly(fluorene-cophenylene) conjugated polyelectrolyte (FsPFc10) serves as a FRET donor to a voltage-sensitive dye acceptor (FluoVolt). We observe FRET between FsPFc10 and FluoVolt, where the enhancement in FRET-sensitized emission from FluoVolt is measured at various donor/acceptor ratios. At a donor/acceptor ratio of 1, the excitation of FluoVolt in a FRET configuration results in a three-fold enhancement in its fluorescence emission (compared to when it is excited directly). FsPFc10 efficiently labels the plasma membrane of HEK 293T/17 cells and remains resident with minimal cellular internalization for ~ 1.5 h. The successful plasma membrane-associated colabeling of the cells with the FsPFc10-FluoVolt donor-acceptor pair is confirmed by dual-channel confocal imaging. Importantly, cells labeled with FsPFc10 show excellent cellular viability with no adverse effect on cell membrane depolarization. During depolarization of membrane potential, HEK 293T/17 cells labeled with the donor-acceptor FRET pair exhibit a greater fluorescence response in FluoVolt emission relative to when FluoVolt is used as the sole imaging probe. These results demonstrate the conjugated polyelectrolyte to be a new class of membrane labeling fluorophore for use in voltage sensing schemes.  相似文献   

15.
The use of Transwells? for routine cultures of 3T3L1 cells results in a much improved rate of differentiation of fibroblasts to adipocytes (100 % in 9 of 10 tests) compared with bottom-well layer cultures. Mean size of cells was not different, but the cell number and overall cell mass was 3× larger in transwell in spite of a smaller surface area. The difference between both models was the accessibility in transwells of both sides of the cells to the medium (and oxygen). Cells were counted, and their size estimated using a handheld cell counter, Scepter?, designed for blood cells, but adjusted to the larger size of adipocytes. Finally, the effect of nitric oxide was tested using spermineNONOate, a nitric oxide (NO·) donor. The product was released to cultures at a constant 1 μl/h rate for up to 3 days using osmotic Alzet? minipumps held in wells with water and discharging their contents to the cultured cell-laden wells through a short capillary tube. A rate of 0.3 pmol/min/ml of medium did not affect the cells’ size, but 0.4 pmol/min/ml significantly increased cell mass. The methodological improvements presented here allow for more uniform cultured cell yields and a more flexible environment for control of cell size and administration of signaling agents.
Representative microphotographs of bottom and transwell 3T3L1 cultures just before harvesting.  相似文献   

16.
Dendritic cells (DCs) play a role in natural killer (NK) cell activation, while NK cells are also able to activate and mature DCs. Toll-like receptors (TLRs) on the surface of DCs and NK cells induce the maturation and activation of these cells when engaged with their cognate ligand. We investigated to generate potent DCs by maturation with NK cells in the presence of TLR agonist in vitro and tested the efficacy of these DC vaccinations in mouse colon cancer model. The optimal ratios of DCs versus NK cells were 1:1 to 1:2. Immature DCs were mature with NK cells in the presence of lipopolysaccharide, which is TLR4 agonist, and further addition of IL-2 induced phenotypically and functionally mature bone marrow-derived DCs. These potent DCs exhibited not only high expression of several costimulatory molecules and high production of IL-12p40 and IL-12p70, but also high allogeneic T cells stimulatory capacity, and the induction of the high activities to generate tumor-specific CTLs. Consistently, vaccination with these DCs efficiently inhibited CT-26 tumor growth in mouse colon cancer model when compared to other vaccination strategies. Interestingly, combination therapy of these DC-based vaccines and with low-dose cyclophosphamide showed dramatic inhibition effects of tumor growth. These results suggest that the DCs maturated with NK cells in the presence of TLR agonist are potent inducer of antitumor immune responses in mouse model and may provide a new source of DC-based vaccines for the development of immunotherapy against colon cancer.  相似文献   

17.
Proteasome inhibitors have shown relevant clinical activity in several hematological malignancies, namely in multiple myeloma and mantle cell lymphoma, improving patient outcomes such as survival and quality of life, when compared with other therapies. However, initial response to the therapy is a challenge as most patients show an innate resistance to proteasome inhibitors, and those that respond to the therapy usually develop late relapses suggesting the development of acquired resistance. The mechanisms of resistance to proteasome inhibition are still controversial and scarce in the literature. In this review, we discuss the development of proteasome inhibitors and the mechanisms of innate and acquired resistance to their activity—a major challenge in preclinical and clinical therapeutics. An improved understanding of these mechanisms is crucial to guiding the design of new and more effective drugs to tackle these devastating diseases. In addition, we provide a comprehensive overview of proteasome inhibitors used in combination with other chemotherapeutic agents, as this is a key strategy to combat resistance.  相似文献   

18.
A new class of soluble, solution-processable platinum(II) acetylide polymers functionalized with electron-deficient 9,10-anthraquinone spacer and their corresponding diplatinum model complexes were synthesized and characterized. The organometallic polymers exhibit good thermal stability and show low-energy broad absorption bands in the visible region. The effect of the presence of thiophene rings along the polymer chain on the optical and photovoltaic properties of these metallated materials was examined. The low-bandgap polymer with thiophene-anthraquinone-thiophene (donor-acceptor-donor) fragment can serve as a good electron donor for fabricating bulk heterojunction polymer solar cells by blending with a methanofullerene electron acceptor. At the same donor:acceptor blend ratio of 1:4, the light-harvesting ability and solar cell efficiency notably increase when the anthraquinone ring is sandwiched by two thiophene units. Photoexcitation of such polymer solar cells results in a photoinduced electron transfer from the π-conjugated metallopolymer to [6,6]-phenyl C61-butyric acid methyl ester with power conversion efficiency up to ∼ 0.35%. For safety concern, these metallopolymers were also tested for possible cytotoxicity and they do not show significant cytotoxic activity on human liver derived cells and skin keratinocytes at reasonable doses, rendering these functional materials safe to use in practical devices.  相似文献   

19.
Metallodrugs form a large family of therapeutic agents against cancer, among which is cisplatin, a paradigmatic member. Therapeutic resistance and undesired side effects to Pt(II) related drugs, prompts research on different metal–ligand combinations with potentially enhanced biological activity. We present the synthesis and biological tests of novel palladium(II) complexes containing bisdemethoxycurcumin (BDMC) 1 and 2. Complexes were fully characterized and their structures were determined by X-ray diffraction. Their biological activity was assessed for several selected human tumor cell lines: Jurkat (human leukaemic T-cell lymphoma), HCT-116 (human colorectal carcinoma), HeLa (human cervix epitheloid carcinoma), MCF-7 (human breast adenocarcinoma), MDA-MB-231 (human mammary gland adenocarcinoma), A549 (human alveolar adenocarcinoma), Caco-2 (human colorectal carcinoma), and for non-cancerous 3T3 cells (murine fibroblasts). The cytotoxicity of 1 is comparable to that of cisplatin, and superior to that of 2 in all cell lines. It is a correlation between IC50 values of 1 and 2 in the eight studied cell types, promising a potential use as anti-proliferative drugs. Moreover, for Jurkat cell line, complexes 1 and 2, show an enhanced activity. DFT and docking calculations on the NF-κB protein, Human Serum Albumin (HSA), and DNA were performed for 1 and 2 to correlate with their biological activities.  相似文献   

20.
We report the novel chemical design of fluorescent activatable chemokines as highly specific functional probes for imaging subpopulations of immune cells in live tumours. Activatable chemokines behave as AND‐gates since they emit only after receptor binding and intracellular activation, showing enhanced selectivity over existing agents. We have applied this strategy to produce mCCL2‐MAF as the first probe for in vivo detection of metastasis‐associated macrophages in a preclinical model of lung metastasis. This strategy will accelerate the preparation of new chemokine‐based probes for imaging immune cell function in tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号