首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Several thermolytic CpG-containing DNA oligonucleotides analogous to 1 have been synthesized to serve as potential immunotherapeutic oligonucleotide prodrug formulations for the treatment of infectious diseases in animal models. Specifically, the CpG motif (GACGTT) of each DNA oligonucleotide has been functionalized with either the thermolabile 4-hydroxy-1-butyl or the 4-phosphato-/thiophosphato-1-butyl thiophosphate protecting group. This functionalization was achieved through incorporation of activated deoxyribonucleoside phosphoramidite 8b into the oligonucleotide chain during solid-phase synthesis and, optionally, through subsequent phosphorylation effected by phosphoramidite 9. Complete conversion of CpG ODNs hbu1555, psb1555, and pob1555 to CpG ODN 1555 (homologous to 2) occurred under elevated temperature conditions, thereby validating the function of these diastereomeric oligonucleotides as prodrugs in vitro. Noteworthy is the significant increase in solubility of CpG ODN psb1555 and CpG pob1555 in water when compared to that of neutral CpG ODN fma1555 (homologous to 1).  相似文献   

3.
4.
Legionella bacterium, an intracellular pathogen of mononuclear phagocytes, causes acute fatal pneumonia, especially in patients with impaired cellular immune responses. Until recently, however, the toll-like receptor (TLR) engagement of bacterial proteins derived from Legionella is uncertain. We previously showed that a 19-kDa highly conserved peptidoglycan-associated lipoprotein (PAL) of Legionella pneumophila induced the PAL-specific B cell and T cell responses in mice. In this study, we observed that the rPAL antigen of L. pneumophila, as an effector molecule, activated murine macrophages via TLR2 and produced proinflammatory cytokines such as IL-6 and TNF-α. In both BALB/c and TLR4-deficient C3H/HeJ mice, pretreatment of macrophages with anti-TLR2 mAb showed severely impaired cytokine production in response to the rPAL. In addition, in vitro the rPAL treatment increased the cell surface expression of CD40, CD80, CD86 and MHC I/II molecules. We further showed that the synthetic CpG-oligodeoxynucleotides (CpG ODN) coadministered with the rPAL enhanced IL-12 and IL-6 production and expression of CD40, CD80 and MHC II compared to the rPAL treatment alone. In conclusions, these results indicate that Legionella PAL might activate macrophages via a TLR2-dependent mechanism which thus induce cytokine production and expression of costimulatory and MHC molecules.  相似文献   

5.
Lysophosphatidylcholine (LPC) is a bioactive lipid generated by phospholipase A2-mediated hydrolysis of phosphatidylcholine. In the present study, we demonstrate that LPC stimulates phospholipase D2 (PLD2) activity in rat pheochromocytoma PC12 cells. Serum deprivation induced cell death of PC12 cells, as demonstrated by decreased viability, DNA fragmentation, and increased sub-G1 fraction of cell cycle. LPC treatment protected PC12 cells partially from the cell death and induced neurite outgrowth of the cells. Overexpression of PLD2 drastically enhanced the LPC-induced inhibition of apoptosis and neuritogenesis. Pretreatment of the cells with 1-butanol, a PLD inhibitor, completely abrogated the LPC-induced inhibition of apoptosis and neurite outgrowth in PC12 cells overexpressing PLD2. These results indicate that LPC possesses the neurotrophic effects, such as anti-apoptosis and neurite outgrowth, through activation of PLD2.  相似文献   

6.
To efficiently deliver CpG oligodeoxynucleotides (ODN) in cancer immunotherapy, a multifunctional macrophage targeting delivery system was designed and prepared. Mannosylated carboxymethyl chitosan/protamine sulfate/CaCO3/ODN (MCMC/PS/CaCO3/ODN) nanoparticles were prepared using a facile self-assembly method. The functional components, including MCMC to endow the nanoparticles with macrophage targeting ability, PS to improve the ODN loading capacity and enhance the cell uptake, and CaCO3 to encapsulate ODN and induce the favorable pH sensitivity, were introduced to the delivery systems by self-assembly. Due to the mannose mediated endocytosis and the favorable effects of PS in overcoming delivery barriers, MCMC/PS/CaCO3/ODN nanoparticles exhibit a much higher ODN delivery efficiency and a significantly enhanced immune stimulation capacity as compared with Lipofectamine 2000/ODN complexes. The regulation of NF-κB activity by our ODN delivery system results in dramatically increased production of proinflammatory cytokines including IL-12, IL-6, and TNF-α in RAW264.7 cells. The significantly increased CD80 expression after stimulation by the ODN delivery systems indicates the successful modulation of the macrophage polarity to the anti-tumor M1 phenotype. The multifunctional macrophage targeting delivery system developed has promising applications in delivery of CpG ODN in cancer immunotherapy.  相似文献   

7.
Xanthatin, a natural sesquiterpene lactone, has significant antitumor activity against a variety of cancer cells, yet little is known about its anticancer mechanism. In this study, we demonstrated that xanthatin had obvious dose-/time-dependent cytotoxicity against the human non-small-cell lung cancer (NSCLC) cell line A549. Flow cytometry analysis showed xanthatin induced cell cycle arrest at G2/M phase. Xanthatin also had pro-apoptotic effects on A549 cells as evidenced by Hoechst 33258 staining and annexin V-FITC staining. Mechanistic data revealed that xanthatin downregulated Chk1, Chk2, and phosphorylation of CDC2, which contributed to the cell cycle arrest. Xathatin also increased total p53 protein levels, decreased Bcl-2/Bax ratio and expression of the downstream factors procaspase-9 and procaspase-3, which triggered the intrinsic apoptosis pathway. Furthermore, xanthatin blocked phosphorylation of NF-κB (p65) and IκBa, which might also contribute to its pro-apoptotic effects on A549 cells. Xanthatin also inhibited TNFa induced NF-κB (p65) translocation. We conclude that xanthatin displays significant antitumor effects through cell cycle arrest and apoptosis induction in A549 cells. These effects were associated with intrinsic apoptosis pathway and disrupted NF-κB signaling. These results suggested that xanthatin may have therapeutic potential against NSCLC.  相似文献   

8.
9.
10.
11.
We designed, for the first time, an enzyme-triggered drug delivery system that is based on cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica (HMS) particles as carriers. Fluorescein dye was used as a model drug, and the fluorescein loading, amino-grafting and CpG ODN capping were evaluated by UV/Vis analysis, zeta potential and N(2) adsorption-desorption measurements and gel electrophoresis. The fluorescein loading capacity and CpG ODN capping amount were 37.7 and 39.6 μg mg(-1), respectively at the weight ratio of 10 Dye/HMS-NH(2)/CpG ODN. Importantly, fluorescein release can be triggered by the addition of deoxyribonuclease I (DNase I) for CpG ODN degradation, and the release rate can also be controlled by changing the DNase I concentration. Therefore, it might be a promising controlled drug delivery system for application in the field of biomedicine and cancer therapy.  相似文献   

12.
13.
We have designed and synthesized linear polymer‐based nanoconjugates and nanocomplexes bearing multivalent immunostimulatory ligands and also demonstrated that the synthetic multivalent nanocomplexes led to an enhanced stimulation of immune cells in vitro and antitumor and systemic immune memory response in vivo. We have developed hyaluronic acid (HA)‐based multivalent nanoconjugates and nanocomplexes for enhanced immunostimulation through the combination of multivalent immune adjuvants with CpG ODNs (as a TLR9 ligand) and cationic poly(L ‐lysine) (PLL; for the enhancement of cellular uptake). The multivalent HA‐CpG nanoconjugate efficiently stimulated the antigen‐presenting cells and the multivalent PLL/HA‐CpG nanocomplex also led to an enhanced cellular uptake as well as continuous stimulation of endosomal TLR9. The mice vaccinated with dendritic cells treated with the multivalent nanocomplex exhibited tumor growth inhibition as well as a strong antitumor memory response.  相似文献   

14.
15.
Matrix metalloproteinase-9 (MMP-9) may play an important role in emphysematous change in chronic obstructive pulmonary disease (COPD), one of the leading causes of mortality and morbidity worldwide. We previously reported that simvastatin, an inhibitor of HMG-CoA reductase, attenuates emphysematous change and MMP-9 induction in the lungs of rats exposed to cigarette smoke. However, it remained uncertain how cigarette smoke induced MMP-9 and how simvastatin inhibited cigarette smoke-induced MMP-9 expression in alveolar macrophages (AMs), a major source of MMP-9 in the lungs of COPD patients. Presently, we examined the related signaling for MMP-9 induction and the inhibitory mechanism of simvastatin on MMP-9 induction in AMs exposed to cigarette smoke extract (CSE). In isolated rat AMs, CSE induced MMP-9 expression and phosphorylation of ERK and Akt. A chemical inhibitor of MEK1/2 or PI3K reduced phosphorylation of ERK or Akt, respectively, and also inhibited CSE-mediated MMP-9 induction. Simvastatin reduced CSE-mediated MMP-9 induction, and simvastatin-mediated inhibition was reversed by farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP). Similar to simvastatin, inhibition of FPP transferase or GGPP transferase suppressed CSE-mediated MMP-9 induction. Simvastatin attenuated CSE-mediated activation of RAS and phosphorylation of ERK, Akt, p65, IκB, and nuclear AP-1 or NF-κB activity. Taken together, these results suggest that simvastatin may inhibit CSE-mediated MMP-9 induction, primarily by blocking prenylation of RAS in the signaling pathways, in which Raf-MEK-ERK, PI3K/Akt, AP-1, and IκB-NF-κB are involved.  相似文献   

16.
17.
In this study, we showed the direct interaction between Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein (FAP) and toll-like receptor4 (TLR4) via co-localization and binding by using confocal microscopy and co-immunoprecipitation assays. FAP triggered the expression of pro- and antiinflammatory cytokines in a TLR4-dependent manner. In addition, FAP-induced cytokine expression in bone marrow-derived dendritic cells (BMDCs) was modulated in part by glycogen synthase kinase-3 (GSK-3). FAP-induced expression of CD80, CD86, major histocompatibility complex (MHC) class I, and MHC class II in TLR4(+/+) BMDCs was not observed in TLR4(-/-) BMDCs. Furthermore, FAP induced DC-mediated CD8(+) T cell proliferation and cytotoxic T lymphocyte (CTL) activity, and suppressed tumor growth with DC-based tumor vaccination in EG7 thymoma murine model. Taken together, these results indicate that the TLR4 agonist, FAP, a potential immunoadjuvant for DC-based cancer vaccination, improves the DC-based immune response via the TLR4 signaling pathway.  相似文献   

18.
G protein-coupled receptors (GPCRs) are core switches connecting excellular survival or death signals with cellular signaling pathways in a context-dependent manner. Opsin 3 (OPN3) belongs to the GPCR superfamily. However, whether OPN3 can control the survival or death of human melanocytes is not known. Here, we try to investigate the inherent function of OPN3 on the survival of melanocytes. Our results demonstrate that OPN3 knockdown by RNAi-OPN3 in human epidermal melanocytes leads to cell apoptosis. The downregulation of OPN3 markedly reduces intracellular calcium levels and decreases phosphorylation of BAD. Attenuated BAD phosphorylation and elevated BAD protein level alter mitochondria membrane permeability, which trigger activation of BAX and inhibition of BCL-2 and raf-1. Activated BAX results in the release of cytochrome c and the loss of mitochondrial membrane potential. Cytochrome c complexes associate with caspase 9, forming a postmitochondrial apoptosome that activate effector caspases including caspase 3 and caspase 7. The release of apoptotic molecules eventually promotes the occurrence of apoptosis. In conclusion, we hereby are the first to prove that OPN3 is a key signal responsible for cell survival through a calcium-dependent G protein-coupled signaling and mitochondrial pathway.  相似文献   

19.
Cutaneous exposure to solar ultraviolet (UV) radiation is a major causative factor in skin carcinogenesis, and improved molecular strategies for efficacious chemoprevention of nonmelanoma skin cancer (NMSC) are urgently needed. Toll‐like receptor 4 (TLR4) signaling has been shown to drive skin inflammation, photoimmunosuppression, and chemical carcinogenesis. Here we have examined the feasibility of genetic and pharmacological antagonism targeting cutaneous TLR4 for the suppression of UV‐induced NF‐κB and AP‐1 signaling in keratinocytes and mouse skin. Using immunohistochemical and proteomic microarray analysis of human skin, we demonstrate for the first time that a significant increase in expression of TLR4 occurs in keratinocytes during the progression from normal skin to actinic keratosis, also detectible during further progression to squamous cell carcinoma. Next, we demonstrate that siRNA‐based genetic TLR4 inhibition blocks UV‐induced stress signaling in cultured keratinocytes. Importantly, we observed that resatorvid (TAK‐242), a molecularly targeted clinical TLR4 antagonist, blocks UV‐induced NF‐κB and MAP kinase/AP‐1 activity and cytokine expression (Il‐6, Il‐8, and Il‐10) in cultured keratinocytes and in topically treated murine skin. Taken together, our data reveal that pharmacological TLR4 antagonism can suppress UV‐induced cutaneous signaling, and future experiments will explore the potential of TLR4‐directed strategies for prevention of NMSC.  相似文献   

20.
25-hydroxycholesterol (25-HC) is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase during cholesterol metabolism. The aim of this study was to verify whether 25-HC induces oxiapoptophagy in fibroblasts. 25-HC not only decreased the survival of L929 cells, but also increased the number of cells with condensed chromatin and altered morphology. Fluorescence-activated cell sorting results showed that there was a dose-dependent increase in the apoptotic populations of L929 cells upon treatment with 25-HC. 25-HC-induced apoptotic cell death was mediated by the death receptor-dependent extrinsic and mitochondria-dependent intrinsic apoptosis pathway, through the cascade activation of caspases including caspase-8, -9, and -3 in L929 cells. There was an increase in the levels of reactive oxygen species and inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2 in L929 cells treated with 25-HC. Moreover, 25-HC caused an increase in the expression of beclin-1 and microtubule-associated protein 1A/1B-light chain 3, an autophagy biomarker, in L929 cells. There was a significant decrease in the phosphorylation of protein kinase B (Akt) in L929 cells treated with 25-HC. Taken together, 25-HC induced oxiapoptophagy through the modulation of Akt and p53 cellular signaling pathways in L929 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号