首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper reports on an EPR study of a ferroelectric, 1.8/65/35, and an antiferroelectric, 2/95/5, of optically transparent Pb1?y LayZr1?x TixO3 (PLZT) ceramics within a broad temperature range (20–300 K) after illumination at a wavelength of 365–725 nm. Illumination with ultraviolet light, whose photon energy corresponds to the band gap of these materials, at T<50 K creates a number of photoinduced centers: Ti3+, Pb+, and Pb3+. It is shown that these centers are generated near a lanthanum impurity, which substitutes for both the Pb2+ and, partially, Ti4+ ions through carrier trapping from the conduction or valence band into lattice sites. The temperature ranges of the stability of these centers are measured, and the position of their local energy levels in the band gap is determined. The most shallow center is Ti3+, with its energy level lying 47 meV below the conduction band bottom. The Pb3+ and Pb+ centers produce deeper local levels and remain stable in the 2/95/5 PLZT ceramics up to room temperature. The migration of localized carriers is studied for both ceramic compositions. It is demonstrated that, under exposure to increased temperature or red light, the electrons ionized into the conduction band from Ti3+ are retrapped by the deeper Pb+ centers, thus hampering the carrier drift in the band and the onset of photoconduction. The part played by localized charges in the electrooptic phenomena occurring in the PLZT ceramics is discussed.  相似文献   

2.
A comparative study of the temperature dependence of electrical resistivity, carrier concentration and carrier mobility of the Ordered Defect Compounds (ODCs) CuIn3Se5, CuIn3Te5, and CuIn5Te8 with their corresponding normal 1:1:2 phase is reported. Relatively lower carrier concentration and higher activation energy observed in ODCs is explained on the basis that shallow acceptor or donor levels observed in 1:1:2 phase are partially annihilated in these compounds due to attractive interaction between VCu−1 and InCu+2 defect pair. In the activation regime, the mobility is explained by taking into account a scattering mechanism of the charge carriers with donor–acceptor defect pairs. The electrical data at lower temperatures is explained with the existing theoretical expression for the nearest neighbor hopping conduction mechanism.  相似文献   

3.
A detailed study of the effects of temperature and hydrostatic pressure on the ionic conductivity of PbF2 in both the cubic (Fm3m-Oh5) and orthorhombic (Pmnb-V2h16) phases was performed with some emphasis on the changes in conductivity accompanying the transition between the two phases. Both phases exhibit relatively high conductivities and become supersonic conductors at high temperatures. As a function of temperature, the conductivity in both phases exhibits a number of activated regions (or stages). Measurements on a variety of samples with different impurities, along with earlier published data, have allowed a determination of the conduction mechanism in the various stages. The activation energies for the motion of F? ion vacancies and interstittals as well as the formation energies of Frenkel defects in the two phases were determined. These energies are relatively small, compared, e.g. with other crystals having the fluorite structure (Fm3m-Oh5), and this can be explained in terms of the large dielectric constants and relatively soft phonons in PbF2. The conductivity decreases with pressure in all stages, primarily as a result of the increase in activation energies. The pressure results allow a determination of the activation volumes associated with the various conduction mechanisms. The magnitudes of these volumes (~2–7 cm3/mole) are consistent with values determined from either the strain energy model or an approximate dynamical model. Differences in the activation volumes for the different conduction mechanisms and between the two phases can be qualitatively understood on the basis of the details of the crystal structures.  相似文献   

4.
Samples of the composition TlNiS2 in the hexagonal system with the unit cell parameters a=12.28 Å, c=19.32 Å, and ρ=6.90 g/cm3 are synthesized. The results of the investigation into the electrical and thermoelectrical properties of TlNiS2 samples in the temperature range 80–300 K indicate that TlNiS2 is a p-type semiconductor. It is found that, at temperatures ranging from 110 to 240 K, TlNiS2 samples in a dc electric field possess variable-range-hopping conduction at the states localized in the vicinity of the Fermi level. The density of localized states near the Fermi level is determined to be NF=9×1020 eV?1 cm?3, and the scatter of the states is estimated as J≈2×10?2 eV. In the temperature range 80–110 K, TlNiS2 exhibits activationless hopping conduction. At low temperatures (80–240 K), the thermopower of TlNiS2 is adequately described by the relationship α(T)=A+BT, which is characteristic of the hopping mechanism of charge transfer. In the case when the temperature increases to the temperature of the onset of intrinsic conduction with the activation energy ΔE=1.0 eV, there arise majority intrinsic charge carriers of both signs. This leads to an increase in the electrical conductivity σ and, at the same time, to a drastic decrease in the thermopower α; in this case, the thermopower is virtually independent of the temperature.  相似文献   

5.
ABSTRACT

The visible emission and vacuum ultraviolet excitation spectra of the series Cs2NaLnCl6 (Ln = Y, Nd, Sm, Eu, Tb, Er, Yb) and Cs2NaYCl6:Ln3+ (Ln = Sm, Er) have been recorded using synchrotron radiation at room temperature, and in some cases at 10 K. The excitation spectra comprise features associated with charge transfer, excitation from the valence to conduction band, and impurity bands. No d–f emissions were observed for these Ln3+ ions, so that the emission bands comprise intraconfigurational 4f N –4f N transitions and impurity bands, whose natures are discussed. Theoretical simulations of the f–d absorption spectra have been included. The comparison with data from the synchrotron at Desy enables a comprehensive account of the ground (or vibrationally excited ground for Ln2+) states of the Ln3+ 4f N , Ln3+ 4f N?15d, and Ln2+ 4f N+1 configurations relative to the valence and conduction bands of Cs2NaLnCl6, for which the band gaps are between 6.6 and 8.1 eV.  相似文献   

6.
The temperature dependences of the conductivities parallel and perpendicular to the layers in layered TlGaSe2 single crystals are investigated in the temperature range from 10 K to 293 K. It is shown that hopping conduction with a variable hopping length among localized states near the Fermi level takes place in TlGaSe2 single crystals in the low-temperature range, both along and across the layers. Hopping conduction along the layers begins to prevail over conduction in an allowed band only at very low temperatures (10–30 K), whereas hopping conduction across the layers is observed at fairly high temperatures (T?210 K) and spans a broader temperature range. The density of states near the Fermi level is determined, N F=1.3×1019eV·cm3)?1, along with the energy scatter of these states J=0.011 eV and the hopping lengths at various temperatures. The hopping length R along the layers of TlGaSe2 single crystals increases from 130 Å to 170 Å as the temperature is lowered from 30 K to 10 K. The temperature dependence of the degree of anisotropy of the conductivity of TlGaSe2 single crystals is investigated.  相似文献   

7.
The conditions for co-existence of emissions from spin-allowed and spin-forbidden 5d–4f transitions in rare earth ions and for thermal quenching of these emissions have been analyzed by taking Tm3+ 5d–4f luminescence in LiYF4:Tm3+ and Lu3+ 5d–4f luminescence in LuF3 as examples. It is shown that temperature behavior of 5d–4f luminescence agrees with the common trends in decreasing energy splitting between the lowest high-spin and low-spin 5d levels as well as decreasing energy gap between the lowest 5d level and the bottom of the conduction band of the host crystal towards heavier rare earth ions (from Er3+ to Lu3+).  相似文献   

8.
Thermal quenching of interconfigurational 5d-4f luminescence of Er3+ and Tm3+ ions in BaY2F8 crystals is studied in the temperature range of 330–790 K. The quenching temperatures are ~575 and ~550 K for Er3+ and Tm3+, respectively. It is shown that quenching of 5d-4f luminescence of Tm3+ ions is caused by thermally stimulated ionization of 5d electrons to the conduction band.  相似文献   

9.
Results are reported from conductivity and thermoelectric power measurements on partially reduced Ca2NaMg2V3O12?x, with x < 5.10?2, at temperatures of 300–1100 K. The conductivity is thermally activated with activation energies 0.26 ? Ea ? 1.28 eV for differently reduced samples. The thermopower is temperature independent in the 300–800 K region. These results are shown to be consistent with the adiabatic hopping of small polarons localised on the vanadium sublattice, where defect interactions result in the formation of multiple conduction pathways.  相似文献   

10.
In this paper thermal performance of graphite-based sensible heat storage system with embedded helical coil in rectangular shell was studied. Plain water at four flow rates (0.25 LPM–1.0 LPM) and four inlet temperatures (60°C–90°C) was passed through the graphite bed and charging time was measured. Expanded graphite/water suspension and Al2O3/water nanofluid were also used to study charging behavior of graphite. Results showed that charging time of packed bed was reduced with increase in flow rate and inlet temperature of heat transfer fluid. Charging time using expanded graphite/water solution and nanofluid was 14.2% and 21.2% lesser than water.

Abbreviations: hi: internal heat transfer coefficient (W m?2 K?1); HTF: Heat transfer fluid; ho: External heat transfer coefficient (W m?2 K?1); LPM: liter per minute; k: thermal conductivity (W m?1 K?1); TSU: Thermal storage unit  相似文献   

11.
A simple and rapid process for the synthesis of Cu2SnS3 (CTS) nanoparticles by microwave heating of metal–organic precursor solution is described. X-ray diffraction and Raman spectroscopy confirm the formation of tetragonal CTS. X-ray photoelectron spectroscopy indicates the presence of Cu, Sn, S in +1, +4, ?2 oxidation states, respectively. Transmission electron microscopy divulges the formation of crystalline tetragonal CTS nanoparticles with sizes ranging 2–25 nm. Diffuse reflectance spectroscopy in the 300–2,400 nm wavelength range suggests a band gap of 1.1 eV. Pellets of CTS nanoparticles show p-type conduction and the carrier transport in temperature range of 250–425 K is thermally activated with activation energy of 0.16 eV. Thin film solar cell (TFSC) with architecture: graphite/Cu2SnS3/ZnO/ITO/SLG is fabricated by drop-casting dispersion of CTS nanoparticles which delivered a power conversion efficiency of 0.135 % with open circuit voltage, short circuit current and fill factor of 220 mV, 1.54 mA cm?2, 0.40, respectively.  相似文献   

12.
Intercalation reactions form one of the most versatile types of solid-state reactions known. Considering the layered host lattices they form an interesting access to artificial multilayers of very different properties. Many of these reactions are connected with redox processes. After a very short and general overview on the intercalation chemistry in layered host lattices, three different types of charge transfer accompanied with intercalation will be considered in detail and the consequence for the properties of the products will be discussed: (a) by means of electrointercalation into conducting host lattices (e.g. 2H-TaS2) electrons are transferred to the conduction band of the host accompanied with the simultaneous uptake of cations (here organic cations like methylene blue, methylviologen) in the interlayer space. Potential vs. time curves give valuable information about two-phase regions, homogeneity ranges and deviations from equilibrium. The consequence for the superconducting properties is shown; (b) treating the graphite intercalation compound C24(HSO4)(H2SO4) with strong oxidants leads to graphite oxide (GO). The oxidant is directly attached to the carbon network forming C–OH and C–O–C functions. Applying 13C MAS NMR of GO (and derivatives) we could identify the ether function as epoxide groups. This result has strong implications for the chemical behaviour of GO and could lead to new carbon networks; (c) clay minerals containing iron in the octahedral layers can undergo changes of the oxidation state of Fe-ions. We have found in vermiculites from Spain that Fe2+ can be oxidized completely to Fe3+, whereas the degree of reduction of the Fe3+ is rather restricted but varies with the composition of the clay. However, the extent of reduction can be strongly increased by heating the reduced samples.  相似文献   

13.
To elucidate the thermoelectric properties at high temperatures, the electrical conductivity and Seebeck coefficient were measured at temperatures between 423 K and 973 K for perovskite-type ceramics of BaBi1?xSbxO3 solid solutions with x=0.0–0.5. All the ceramics exhibit p-type semiconducting behaviors and electrical conduction is attributed to hopping of small polaronic holes localized on the pentavalent cations. Substitution of Bi with Sb causes the electrical conductivity σ and cell volume to decrease, but the Seebeck coefficient S to increase, suggesting that the Sb atoms are doped as Sb5+ and replace Bi5+, reducing 6s holes conduction from Bi5+(6s0) to Bi3+ (6s2). The thermoelectric power factor S 2σ has values of 6×10?8–3×10?5 W m?1 K?2 in the measured temperature range, and is maximized for an Sb-undoped BaBiO3?δ, but decreases upon Sb doping due to the decreased σ values.  相似文献   

14.
The temperature dependences of the conductivity and the thermoelectric coefficient in TlFeS2 and TlFeSe2 samples have been investigated in the temperature range 85–400 K. The variable-range hopping conduction has been established. It is found that the density of localized states N F near the Fermi level is 1.7×1018 and 3.3×1018 eV?1 cm?3, and the average hopping length R is 109 and 104 Å for TlFeS2 and TlFeSe2, respectively. The non-Arrhenius (activationless) behavior of the hopping conductivity is established in the temperature region T<200 K for TlFeS2 and T<250 K for TlFeSe2.  相似文献   

15.
The mulliphonon transition rates in Ho3+:LaF3 are estimated from the observed fluorescence decay rates of the states 5F3 and (5F4, 5S2), in the temperature interval 80–675°K. The data is analyzed in terms of the existing theoretical models. The analysis indicates that the high energy phonons play a dominant role in these multiphonon transitions.  相似文献   

16.
Optically clear glasses in the ZnO–Bi2O3–B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz–10 MHz)-independent dielectric characteristics associated with significantly low loss (D?=?0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18?±?4 ppm °C?1 in the 35–250 °C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.  相似文献   

17.
The present work aims to investigate the pre- and post-effect of 50 MeV Li3+ ion irradiation at a fluence of 5×1013 ions/cm2 on the dielectric properties of Y3+xFe5?xO12, x=0.0, 0.2, 0.4 and 0.6, garnet system over broad temperature, 300–673 K, and frequency, 100 Hz–13 MHz, ranges. Thermal variation of ac resistivity measurements suggests that the mechanism responsible for conduction in the system is polaron hopping. The observed modifications in dielectric properties after swift heavy ion irradiation are mainly due to the modifications of the metal–insulator contacts due to radiation damage-induced disorder and irradiation-induced point/cluster of defects in the material and also compressive strain generated in the lattice structure. The electric modulus presentation and the complex impedance spectral analysis have been employed to study the relaxation process. The YFeO3 phase is found to be irradiation hard phase as compared with the garnet phase.  相似文献   

18.
The energies of the ground 4f n levels of tri- and divalent rare-earth ions with respect to the conduction and valence bands of Gd2O2S crystal has been determined. It is shown that the Pr3+, Tb3+, and Eu3+ ions can be luminescence centers in Gd2O2S. The levels of the Nd3+, Dy3+, Er3+, Tm3+, Sm3+, and Ho3+ ions lie in the valence band; therefore, these ions cannot play the role of activators. The ground 4f level of the Ce3+ ion is near the midgap, due to which Ce3+ effectively captures holes from the valence band and electrons from the conduction band and significantly decreases the afterglow level of the Gd2O2S:Pr and Gd2O2S:Tb phosphors.  相似文献   

19.
Single crystals of EuB6 were prepared by the floating-zone method. Magnetic and electric measurements on these crystals in the temperature range 1.6–300 K revealed that the pure EuB6 is an antiferromagnet with a Néel temperature of 5–6 K and has a carrier concentration of 4.2 × 1020 cm-3. It was found that in polycrystalline sample, defects of Eu ions reduce the carrier concentration and make the sample ferromagnetic. It is suggested that the conduction electrons in pure EuB6 originate from the overlap of the 4f band tail and the conduction band.  相似文献   

20.
Glasses of the general formula xLi2O·(20?x)CaO·30P2O5·30V2O5·20Fe2O3 with x=0, 5, 10, 15 and 20 mol% were prepared; IR, density, electrical and dielectric properties have been investigated. Lithia-containing glasses revealed more (P2O7)4?, FeO6, V–O? and PO? groups and mostly have lower densities than those of lithia-free ones. The electrical properties showed random behavior by replacing Li2O for CaO, which has been assigned to the change of the glass structure. The results of activation energy and frequency-dependent conductivity indicate that the conduction proceeds via electronic and ionic mechanisms, the former being dominant. The mechanism responsible for the electronic conduction is mostly thermally activated hopping of electrons from Fe(II) ions to neighboring Fe(III) sites and/or from V4+ to V5+. The dielectric constant (ε′) showed values that depend on the structure of glass according to its content of Li2O. The (ε′) values are ranging between 3 and 41 at room temperature for 1 kHz, yet at high temperatures, glass with 20 mol Li2O exhibits values of 110 and 3600 when measurement was carried out in the range 0.1–1 kHz, and at 5 MHz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号