首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
At low temperatures In0.53Ga0.47As samples show an increase of carrier concentration, which can be explained in terms of a two carriers transport model. This type of problem exists since the beginning of the semiconductor era, dating back to monocrystalline germanium.We propose that in all the investigated layers, there are X atoms or charged dislocations in the region of the first monolayers, which are built in during epitaxial growth. The layers were intentionally undoped. They form an impurity band in which low mobility carriers dominate over the localised electron scattering due to the s-d exchange interaction. These carriers do not freeze out at liquid helium temperature and give rise to two transport media for electrons; a conduction band at higher temperatures and an impurity band at lower temperatures. The electron which fall down onto the previously ionised X atoms, then move by thermally activated hopping. We show that the two carriers model for In0.53Ga0.47As epitaxial layers are confirmed by the carrier concentration-temperature, carrier concentration-magnetic field, resistivity-magnetic field behaviour, and also by YKA theory also. The differences between the two transport models are so distinctive that observed phenomena may exist. This paper presents experimental results, which constitute comprehensive evidence for the complicated structure of the semiconductor epitaxial layers on the sample of n-type In0.53Ga0.47As/InP layer with n=2.2×1015/cm3.  相似文献   

2.
A detailed study of the persistent photoconductivity effect (PPE) at selectively doped Al0.3Ga0.7As/GaAs interface was carried out at low (4.2 and 77 K) temperatures on samples with different original channel concentrations and mobilities. The observed selectiveness of the PPE to the photon energy allowed us to identify two independent mechanisms of the PPE making almost equal contributions to the total effect. These two mechanisms are: (i) electron photoexcitation from DX centers in AlGaAs layer, (ii) electron—hole generation in bulk GaAs with a charge separation at the interface. It has been found that the behavior of the mobility as a function of the channel concentration (altered by light) depends on a setback thickness d. For a sample with small d a marked mobility drop has been found. The well-resolved structure in the dependence of the electron mobility on the channel concentration has been observed. The first peculiarity is explained by free electron population of AlGaAs layer due to the electron photorelease from DX-centers. The second feature, occurring at higher charge densities in the channel is attributed to the effect of intersubband scattering arising due to the electron occupation of an excited subband at the interface.  相似文献   

3.
The ion fractions η+ of low energy (5–10 keV) neon particles scattered from a Cu(100) surface are measured with a time of flight spectrometer. These fractions are obtained for neutral as well as charged projectiles and for different crystal directions. The scattering angle θ was 30°. For a primary energy E0 of 5 keV neutral projectiles have a value for η+ which is 30 times lower than for charged projectiles; these values are 0.15 and 4.5% respectively. For E0 = 10 keV the values of η+ are about the same (~22%). Energy differences up to 22 eV, depending on E0, are observed between the single scattering peaks in the ion spectra of charged and neutral projectiles but also between the single scattering peak in the spectra of all scattered particles and of ions, with ions as projectiles. A qualitative discussion of these data is given, involving charge transfer processes of noble gas particle and target atom. The data suggest that these neutralization processes can be described more adequately with interatomic neutralization processes along the trajectory than with Auger neutralization by conduction electrons.  相似文献   

4.
We study both monolayer and bilayer graphene transport properties taking into account the presence of correlations in the spatial distribution of charged impurities. In particular we find that the experimentally observed sublinear scaling of the graphene conductivity can be naturally explained as arising from impurity correlation effects in the Coulomb disorder, with no need to assume the presence of short-range scattering centers in addition to charged impurities. We find that also in bilayer graphene, correlations among impurities induce a crossover of the scaling of the conductivity at higher carrier densities. We show that in the presence of correlation among charged impurities the conductivity depends nonlinearly on the impurity density ni and can increase with ni.  相似文献   

5.
We report a detailed study, both experimental and theoretical, of electron mobility and Hall coefficient in small-gap CdxHg1?xSe mixed crystals. The electron mobility is calculated by the variational technique. The results obtained with no adjustable parameter are within 15% of the experimental values in the range of temperature 4.2–300 K, electron concentrations 7 × 1016?5 × 1018cm?3 and composition 0 < x ? 0.25.The scattering of electrons by charged centres, optical phonons (polar and nonpolar interaction), acoustic phonons as well as disorder (alloy) scattering is taken into account. It is shown that the composition-dependent dielectric function and the band edge symmetry play an important role in the explanation of the experimental results.  相似文献   

6.
Low temperature magneto-transport properties and electron dephasing mechanisms of phosphorus-doped ZnO thin films grown on (1 1 1) Si substrates with Lu2O3 buffer layers using pulsed laser deposition were investigated in detail by quantum interference and weak localization theories under magnetic fields up to 10 T. The dephasing length follows the temperature dependence with an index p≈1.6 at higher temperatures indicating electron–electron interaction, yet becomes saturated at lower temperatures. Consistent with photoluminescence measurements and the multi-band simulation of the electron concentration, such behavior was associated with the dislocation densities obtained from x-ray diffraction and mobility fittings, where charged edge dislocations acting as inelastic Coulomb scattering centers were affirmed responsible for electron dephasing. Owing to the temperature independence of the dislocation density, the phosphorus-doped ZnO film maintained a Hall mobility of 4.5 cm2 V−1 s−1 at 4 K.  相似文献   

7.
Galvanomagnetic properties of low and high mobility n-Hg0.8Cd0.2Te are reported. The experiments were carried out in magnetic fields up to 60 kG and between 1.8 and 77 K. The Hall coefficient does not show thermal and magnetic freeze-out of carriers. At 77 K the transversal magnetoresistance shows a proportionality ?⊥ ∝ B as was predicted by Gurevich and Firsov for the case of polar optical scattering in non-degenerated semiconductors. At 4 K where the mobility is governed by impurity scattering ?⊥ ∝ B2.4 was observed in the extreme quantum limit. A negative longitudinal magnetoresistance was found at 77 K. The experimental results of high and low mobility samples show significant differences.  相似文献   

8.
The deviations from the stoichiometric composition of HgTe and Hg0.82Cd0.18Te crystals have been controlled by heat treatment under Hg vapor pressure. The magnetic field dependence of the Hall coefficient always shows the presence of two different sets of electrons and one set of holes. A low mobility electron is shown to belong to the conduction band. Vapor pressure dependence of hole concentration in HgTe shows that the concentration of nonstoichiometric defects decreases with increasing Hg vapor pressure, but the hole concentration is always higher than the electron concentration. In the case of Hg0.82Cd0.18Te, the electron concentration exceeds the hole concentration at high Hg vapor pressures. The dependence of the conduction band electron mobility in HgTe upon carrier density shows that the scattering by holes and impurities is predominant. In Hg0.82Cd0.18Te, however, optical phonon scattering is dominant when the deviation from stoichiometry is small and the effect of residual impurities can be neglected, and scattering by holes is dominant when the hole concentration is over 1017cm3.  相似文献   

9.
We analyse the low temperature subband electron mobility in a Ga0.5In0.5P/GaAs quantum well structure where the side barriers are delta-doped with layers of Si. The electrons are transferred from both the sides into the well forming two dimensional electron gas (2DEG). We consider the interface roughness scattering in addition to ionised impurity scattering. The effect of screening of the scattering potentials by 2DEG on the electron mobility is analysed by changing well width. Although the ionized impurity scattering is a dominant mechanism, for small well width the interface roughness scattering happens to be appreciable. Our analysis can be utilized for low temperature device applications.   相似文献   

10.
Transport properties of the electrons itinerant two dimensionality in a square quantum well of In0.53Ga0.47As are studied in the framework of Fermi-Dirac statistics including the relevant scattering mechanisms. An iterative solution of the Boltzmann equation shows that the ohmic mobility is controlled by LO phonon scattering at room temperature, but below 130 K alloy scattering is predominant. The calculated mobilities with a suitable value of the alloy scattering potential agree with the experimental results over a range of lattice temperature. For lattice temperatures below 25 K where the carrier energy loss is governed by the deformation potential acoustic scattering, the warm electron coefficient is found to be negative. Its magnitude decreases with increasing lattice temperature and is greater for larger channel widths. Values of the small-signal AC mobility of hot electrons at a lattice temperature of 4.2 K are obtained for different sheet carrier densities and channel widths. Cut-off frequencies around 100 GHz are indicated.Dedicated to H.-J. Queisser on the occasion of his 60th birthday  相似文献   

11.
We investigated the influence of an ultrathin InGaN channel layer on two-dimensional electron gas (2DEG) properties in a newly proposed hybrid GaN/InxGa1−xN/ZnO heterostructure using numerical methods. We found that 2DEG carriers were confined at InGaN/ZnO and GaN/InGaN interfaces. Our calculations show that the probability densities of 2DEG carriers at these interfaces are highly influenced by the In mole fraction of the InGaN channel layer. Therefore, 2DEG carrier confinement can be adjustable by using the In mole fraction of the InGaN channel layer. The influence of an ultrathin InGaN channel layer on 2DEG carrier mobility is also discussed. Usage of an ultrathin InGaN channel layer with a low indium mole fraction in these heterostructures can help to reduce the short-channel effects by improvements such as providing 2DEG with higher sheet carrier density which is close to the surface and has better carrier confinement.  相似文献   

12.
The carrier mobility of HgTe crystals at 15°C increased to as much as 33,000 cm2V sec, and the transverse magnetoresistance decreased, when the crystals were annealed long enough in mercury vapor. The results are compared with our calculations of the galvanomagnetic effects for mixed scattering by phonons and charged centers, which was made for a parabolic band. It is concluded that the density of charged centers decreases with annealing, and that acoustic phonons may be the dominant scattering sources near room temperature.  相似文献   

13.
依据离化杂质散射、声学声子散射和谷间散射的散射模型,在考虑电子谷间占有率的基础上,通过求解玻尔兹曼方程计算了不同锗组分下,不同杂质浓度时应变Si/(001)Si1-xGex的电子迁移率.结果表明:当锗组分达到0.2时,电子几乎全部占据Δ2能谷;低掺杂时,锗组分为0.4的应变Si电子迁移率与体硅相比增加约64%;对于张应变Si NMOS器件,从电子迁移率角度来考虑不适合做垂直沟道.选择相应的参数,该方 关键词: 电子谷间占有率 散射模型 锗组分 电子迁移率  相似文献   

14.
二硫化钼纳米点正在成为有潜质的半导体材料用于光电设备的应用.然而,关于对其中激子动力学的研究却很少.本文利用飞秒瞬态吸收光谱学来研究二硫化钼纳米点的载流子动力学.结果显示,缺陷辅助的载流子再复合过程与观测到的动力学相符,通过俄歇散射对光激载流子进行俘获至少存在两种不同俘获速率的缺陷.四个过程参与了载流子驰豫,在受到光激发后,立即在~0.5 ps内载流子冷却,然后大部分载流子被缺陷快速俘获,随着泵浦能量的增加,该过程对应的时间从~4.9 ps增加到~9.2 ps,这可以用缺陷态的饱和来解释.接下来,拥有相对慢的载流子俘获速率的其它类型缺陷对小部分载流子进行俘获,该过程约65 ps.最后,剩余的少量载流子通过直接带间跃迁发生电子-空穴再复合,时间约为1 ns.研究结果可以深入了解二硫化钼纳米点中的载流子动力学基本原理,引导其更多的应用.  相似文献   

15.
Electron scattering by parallel arrays of charged dislocations in InSb-type semiconductors is considered. In the theoretical approach the nonparabolic structure of the conduction band of the semiconductors considered is taken into account in the approximation of a simplified Kane's band model. The effect of screening by free electrons of the dislocation charge is also included in the theory. The calculated relaxation time of the electrons is used to derive a formula for the dislocation-limited electron mobility in the semiconductors. Some examples of calculations of the charged dislocation-limited mobility as a function of the electron concentration with the dislocation density as a parameter are given for n-InSb at 77 K and 300 K. The ratio of the magnitudes of the charged dislocation-limited mobility to the ionized impurity-limited mobility in n-type material at low temperatures is also discussed.  相似文献   

16.
Measurements of the electrical conductivity, magnetoresistance, and Hall effect were performed on a n-type ferromagnetic semiconductor HgCr2?xInxSe4(x = 0.100) single crystal from 6.3 to 296 K in magnetic fields up to 1.19×l06A/m. The conductivity decreases rapidly near the Curie temperatureTc (≈120 K) as the temperature is raised. A large peak in the magnetoresistance is observed near Tc. The Hall effect measurements indicate that the temperature dependence of the conductivity and the magnetoresistance are due mostly to a change in electron mobility. The electron mobility is 1.2 × 10?2 m2/V · s at 6.3 K, and decreases rapidly near Tc with the rise in temperature. Then it increases slowly from 5.5 × 10?4 m2/V · s at 160 K to 7.5 × 10?4 m2/V · s at 241 K. This temperature dependence of the electron mobility can be explained in terms of the spin-disorder scattering which takes into account the exchange interaction between charge carriers and localized magnetic moments.  相似文献   

17.
在低温强磁场条件下,对In0.53Ga0.47As/In0.52Al0.48As量子阱中的二维电子气进行了磁输运测试.在低磁场范围内观察到正磁电阻效应,在高磁场下这一正磁电阻趋于饱和,分析表明这一现象与二维电子气中的电子占据两个子带有关.在考虑了两个子带之间的散射效应后,通过分析低磁场下的正磁电阻,得到了每个子带电子的迁移率,结果表明第二子带电子的迁移率高于第一子带电子的迁移率.进一步分析表明,这主要是由两个子带之间的 关键词: 二维电子气 正磁电阻 子带散射  相似文献   

18.
Several transport properties have been studied on CdIn2S4 singlê crystals with different degrees of deviation from stoichiometry. The energy gap at 0 K was determined from the electrical measurements to be 2.2 eV. The anisotropy of the magnetoresistance effect was found and it was suggested that the minima of the conduction band were located at points along the [100] directions in k space. From an analysis of the mobility data it was found that the high resistivity of the samples is due to compensation of donors by acceptors introduced by excess sulphur. Several band parameters, the carrier scattering mechanisms and the impurity levels were determined. The thermal conductivity was measured from 4 K to 300 K and analysed by Callaway's formalism.  相似文献   

19.
The intensity and giant circular polarization of edge luminescence in a longitudinal magnetic field have been measured in nitrogen alloys GaAsN under circularly polarized pumping. It has been found that these dependences are shifted with respect to zero field by a value B eff. The magnitude of the internal field B eff increases with the pumping intensity and reaches saturation (≈250 G) at large excitation densities. The saturation of the B eff field with growth of pumping indicates that this is a field of nuclei, polarized dynamically due to hyperfine interaction with optically oriented deep paramagnetic centers, rather than a field of exchange interaction created on the center by spin-polarized photo-excited conduction electrons. The short time of nuclear polarization by electrons (<15 μs), measured under modulation of circular polarization of the exciting light with high frequency, points to a small number of nuclei undergoing hyperfine interaction with an electron localized at a center.  相似文献   

20.
李维勤  张海波  鲁君 《物理学报》2012,61(2):27302-027302
采用考虑电子散射、俘获、输运和自洽场的三维数值模型, 模拟了低能非聚焦电子束照射接地SiO2薄膜的带电效应. 结果表明, 由于电子的迁移和扩散, 电子会渡越散射区域产生负空间电荷分布. 空间电荷呈现在散射区域内为正, 区域外为负的交替分布特性. 对于薄膜负带电, 电子会输运至导电衬底形成泄漏电流, 其暂态过程随泄漏电流的增加趋于平衡. 而正带电暂态过程随返回二次电子的增多而趋于平衡. 在平衡态时, 负带电表面电位随薄膜厚度、陷阱密度的增大而降低, 随电子迁移率、薄膜介电常数的增大而升高;而正带电表面电位受它们影响较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号