首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface magnetic anisotropy energy was studied for (Gd0.26Co0.74)0.96Mo0.04 and (Gd0.29Co0.71)0.96Mo0.04 thin amorphous films by means of microwave spectroscopy at the X-band within the temperature range 4–295 K. Excitations of surface spin waves were observed in the spin wave resonance spectra. The experiment was performed in a rotating external magnetic field. The angular dependence of the resonance field for the uniform mode (spin wave vector k=0) and the surface mode made it possible to determine the surface uniaxial anisotropy constant Ks and its temperature dependence. An inhomogeneity of the saturation magnetization Ms within a close-to-surface layer of thickness d can generate the surface anisotropy energy with anisotropy constant Ks given by the formula: Ks=4πMbs (MbsMsurfs)d, where the indexes b and surf correspond to the bulk and surface values, respectively. The temperature dependence of Ks calculated by means of the formula agrees qualitatively with temperature dependence of Ks found in the experiment.  相似文献   

2.
Powders of undoped ferrihydrite nanoparticles and ferrihydrite nanoparticles doped with cobalt in the ratio of 5: 1 have been prepared by hydrolysis of 3d-metal salts. It has been shown using Mössbauer spectroscopy that cobalt is uniformly distributed over characteristic crystal-chemical positions of iron ions. The blocking temperatures of ferrihydrite nanoparticles have been determined. The nanoparticle sizes, magnetizations, surface anisotropy constants, and bulk anisotropy constants have been estimated. The doping of ferrihydrite nanoparticles with cobalt leads to a significant increase in the anisotropy constant of a nanoparticle and to the formation of surface rotational anisotropy with the surface anisotropy constant K u = 1.6 × 10–3 erg/cm2.  相似文献   

3.
Based on Monte Carlo simulation, the spin configurations, thermal magnetization and hysteresis loops of the clusters coated by the surface shell with radial anisotropy are studied. Interestingly, a new multidomain containing a few of subdomains whose easy directions are along those of the configurational anisotropy, a magnetization curve in steps and a first order phase transition from the single domain to the multidomain in the thermal and field magnetization processes, are found, which is as a result of the interplay of the configurational anisotropy, the size effect, the surface anisotropy, the applied field and the thermal fluctuation. In this first order transition, we find a critical temperature, a critical surface anisotropy and a critical size. The simulated temperature dependence of the coercivity of the cluster with the surface anisotropy can be fitted by Hc (T)=Hc (0)(1-CαTα) with low value of α, which explains well the experimental results of the nanoparticles. Moreover, it is found that the hysteresis loops and coercivity are strongly affected by the cluster size and the thickness of the surface layer.  相似文献   

4.
In-plane magnetic surface anisotropies have been detected for Fe(110) on W(110) using in situ Conversion Electron Mössbauer Spectroscopy (CEMS). The phenomenon used for the determination of this anisotropy was a switching of the spontaneous magnetizationJ s from [001] to [1¯10] with decreasing thickness. Analysis of the data is performed using a homogeneous magnetization approximation for competing surface and bulk anisotropies, which is justified by a micromagnetic analysis and established experimentally by CEMS. In-plane surface anisotropy constants for the clean Fe(110) surface, the Fe metal-interface and the FeGaAs interface are determined toK s,p FeUHV =0.065 erg·cm–2,K s,p FeMetal =0.040 erg ·cm–2, andK s,p FeGaAs =0.047 erg ·cm–2, all with an estimated accuracy of the order of 10%.  相似文献   

5.
The anisotropic characteristics of an iron silicide (Fe3Si) epitaxial thin magnetic film grown on a Si(111) silicon vicinal surface with a misorientation angle of 0.14° have been measured by the ferromagnetic resonance method. It has been shown that the polar and azimuth misorientation angles of the crystallographic plane of the substrate can be determined simultaneously from the angular dependences of the ferromagnetic resonance field of the epitaxial film. The effective saturation magnetization of the film M eff = 1105 G and the constant of the cubic magnetocrystalline anisotropy K 4 = 1.15 × 105 erg/cm3 have been determined. The misorientation of the substrate plane leads to the formation of steps on the film surface and, as a result, to the appearance of uniaxial magnetic anisotropy of the magnetic dipole nature with the constant K 2 = 796 erg/cm3. Small unidirectional magnetic anisotropy (K 1 = 163 erg/cm3), which may be associated with symmetry breaking on the steps of the film and is due to the Dzyaloshinskii–Moriya interaction, has been detected.  相似文献   

6.
Heavy ion irradiation in the electronic stopping power region induces macroscopic dimensional change in metallic glasses and introduces magnetic anisotropy in some magnetic materials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and modification of magnetic anisotropy are expected. Magnetic anisotropy was measured using Mössbauer spectroscopy of virgin and irradiated Fe40Ni40B20 and Fe40Ni38Mo4B18 metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D 23 of the second and third lines of the Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display in-plane magnetic anisotropy, i.e., the spins are oriented parallel to the ribbon plane. Irradiation is found to cause reduction in magnetic anisotropy. Near-complete randomization of magnetic moments is observed at high irradiation doses. Correlation is found between the residual stresses introduced by ion irradiation and the change in magnetic anisotropy.  相似文献   

7.
The reversible magnetic torque of untwinned YBa2Cu3O7 single crystals shows the four-fold symmetry in thea-b plane. The irreversible torque indicates evidence for a novel intrinsic pinning along thea andb axes. These facts mean that the free energy of the four-fold symmetry has a minimum when the field is applied along thea orb axis. The results are consistent with those expected from thed x 2?y 2 symmetry and rule out the possibility of thed xy symmetry. The Fermi surface anisotropy is not responsible for the observed anisotropy. This is firstbulk evidence for thek-dependent gap anisotropy on the Fermi surface. The two-fold anisotropy parameter is found as\(\gamma _{ab} = \sqrt {{{m_a } \mathord{\left/ {\vphantom {{m_a } {m_b }}} \right. \kern-\nulldelimiterspace} {m_b }}} = 1.18 \pm 0.14\).  相似文献   

8.
We show a possibility to determine the parameters characterizing surface magnetic anisotropy of platelet BaFe12O19 nanocrystals with thickness comparable to the magnetoperturbed surface layer of high-anisotropic hexagonal crystal. Taking into account the above-mentioned specific character of the particles, we introduce the constant KS as the surface anisotropy energy per unit volume of near-surface layer. Temperature dependence of the surface anisotropy field as one of the components of effective anisotropy was corrected taking into account the thermal fluctuations. Discovered anomaly initiated calculation of the surface anisotropy constant with different approaches for two different temperature ranges. Analyzing the KS sign changes with temperature, we conclude about the transformation of surface anisotropy from plane to axis type.  相似文献   

9.
The anisotropy of local fields on 57Fe nuclei of Fe3+ ions located in the 12k positions of the BaFe12O19 ferrite is studied at low temperatures. The contributions of the anisotropy of the dipole and hyperfine fields to the anisotropy of local fields are separated. The contribution of Fe3+ ions in the 12k positions to the anisotropy energy constant K 1 is calculated in the case of the interionic magnetic dipole-dipole interaction. This contribution comprises more than one-half the experimental K 1 value.  相似文献   

10.
The ferrimagnetic saturation moment and hexagonal anisotropy constant K1 have been measured at 4K on a Zn2Y single crystal and on polycrystalline BaFe2+2W and SrFe2+2W samples. The moment of Fe2W is in agreement with a collinear spin coupling and with the known site occupation for the Fe2+ ions. The moment of Zn2Y is 9% lower than the value for a collinear configuration.The uniaxial anisotropy of Fe2+ in hexagonal ferrites is discussed and compared with that of Co2+. No noticeable Fe2+ anisotropy is found in Fe2W in contrast to LaM = LaFe2+Fe3+11O19, in which the Fe2+ anisotropy is strong. The difference is attributed to the symmetry difference of the sites occupied by the Fe2+ ions in both compounds. The current theory does not satisfactorily explain the anisotropy and quadrupole splitting of Fe2+ in LaM. From this it is concluded that admixing of 5E states and (or) the influence of a dynamical Jahn-Teller effect cannot be neglected.The dipole-dipole anisotropy is computed for the M, W and Y structure and some deviation from the literature data is found. Using these results, a mean anisotropy of 1.3 to 2.3 cm?1 per Fe3+ ion is found for the three structures.  相似文献   

11.
The main aim of the present paper is to estimate the magnitude of the magnetic surface anisotropy of a semiinfinite intinerant ferromagnet by calculating the contribution of surface states to the surface energy. Surface states are investigated without and with the consideration of the spin-orbit interaction (which causes the dependence of the sample energy on the magnetization direction). Different more or less realistic estimates of the surface parameters are used. Only threeT 2g 3d-bands described in the tight-binding approximation are used to represent a 3d transition metal. Numerical calculation was performed for the (100) Ni surface. For this case the presence of the axial magnetic surface anisotropy was confirmed. The surface anisotropy constant corresponding to the surface-state contribution is estimated to be ?0·2 to ?0·3 erg/cm2.  相似文献   

12.
A method for calculating the contribution of exchange interaction to uniaxial anisotropy with the use of g’ factors has been worked out using CoCO3 crystals as an example. The calculated contribution of dipole-dipole interactions to the anisotropy of CoCO3 is 0.93 cm?1. The sum of the contributions to the anisotropy constant of CoCO3 with the inclusion of the dipole-dipole interactions is 36.1 cm?1.  相似文献   

13.
We report magnetic properties of silica-coated CoFe2O4 nanoparticles (about 32 nm) in a wide temperature range (4-700 K). Coating CoFe2O4 nanoparticles with amorphous silica yields an assembly of noninteracting single-domain particles with cubic magnetocrystalline anisotropy. We find that the reduced remanence is about 0.81-0.82 at low temperatures (?100 K), very close to the theoretical prediction (0.83) for cubic anisotropy. The room-temperature anisotropy constant K1 inferred from the data is also in quantitative agreement with the bulk value (1.8×106 erg/cm3). The current work thus provides a quantitative test for a theory of noninteracting single-domain particles with cubic anisotropy.  相似文献   

14.
Surface excitations in thin amorphous (Gd1?xCox)1?yMoy films obtained by the rf sputtering technique were studied. A microwave spectrometer at X-band was used for magnetic resonance investigation with external magnetic field rotating from perpendicular to parallel resonance orientations. The critical angle and angular dependence of the position of the surface mode and the uniform mode were determined. The Surface Inhomogeneity (SI) model was applied with symmetrical boundary conditions. The surface anisotropy energy term was assumed as a superposition of the uniaxial anisotropy term and a biaxial anisotropy term. The origin of the latter term is not known yet. We also performed the resonance experiment for different temperatures ranging from 180 to 300 K. From the experiment, the uniaxial surface anisotropy constant Ks1 and the biaxial surface anisotropy constant Ks2 were found as functions of the temperature; the uniaxial anisotropy energy against temperature changes the sign for y=0.02 from easy axis to easy plane while the biaxial surface anisotropy does not change its character.  相似文献   

15.
This is an extension of a previous paper which examined the methods available for the determination of the anisotropy constant from torque curves when the anisotropy is governed by a single constant i.e. E = K1 sin2φ. The two methods singled out in that paper as being of special merit are briefly re-examined when the anisotropy energy takes the form E = K1 sin2φ + K2 sin4φ.  相似文献   

16.
包钴型r-Fe2O3磁粉各向异性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张林 《物理学报》1992,41(7):1167-1173
包钴型γ-Fe2O3磁粉的矫顽力可比原γ-Fe2O3磁粉提高8000—32000A/m。木文研究探讨了两种包钴型γ-Fe2O3磁粉(包钴γ-Fe2O3和包钴包亚铁γ-Fe2O3)的单轴各向异性的起源和矫顽力增大的机制。包钴γ-Fe2O3磁粉矫顽力 关键词:  相似文献   

17.
The domain wall NMR spectra of57Fe were measured on polycrystalline samples of BaFe12O19 and SrFe12O19 at 4·2 K. We have calculated the anisotropy of the hyperfine field dipolar component. The measured NMR spectra were interpreted supposing that the hyperfine field anisotropy is caused only by the dipolar field anisotropy.  相似文献   

18.
The anisotropy spin-orbit coupling matrices for a d5 configuration ion in a trigonal ligand-field have been established. On basis of the anisotropy spin-orbit coupling matrices, the ground state zero-field splitting of the Fe3+ ions in ilmenite-structure MgTiO3:Fe3+ system has been studied. The calculated results show that the anisotropy of Fe3+ ions in the diamagnetic ilmenite MgTiO3 is important and the EPR parameters depend sensitively on the anisotropy divergent parameter. Moreover, the effect of the anisotropy divergent parameter on the second-order parameter D is obviously larger than that on the fourth-order parameter (a-F). Based on this point, the local lattice structure of Fe3+ ion in MgTiO3:Fe3+ system is determined by diagonalizing the complete energy matrices for a d5 configuration ion in a trigonal ligand-field and considering the second-order as well as the fourth-order EPR parameters D and (a-F) simultaneously. Our results are consistent with the experimental proposal that Fe3+ ions may locate at both the Mg2+ and Ti4+ sites.  相似文献   

19.
Angular anisotropy of the alpha emission from241Am nuclei oriented by magnetic hyperfine interaction at low temperatures in ZrFe2-host have been observed. The sign of the anisotropy indicates unambiguously the enhanced alpha emission from the poles of241Am nucleus. The value of magnetic hyperfine field on241Am nuclei have been estimated from the temperature dependence of the anisotropy.  相似文献   

20.
Electron paramagnetic resonance (EPR) of a new compound {[Nd2(α-C4H3OCOO)6(H2O)2]} n composed of Nd3+–Nd3+ dimers is reported. The anisotropy parameters of the spin–spin interaction are determined by fitting experimental and simulated spectra in X- and Q-bands. It is shown that the anisotropy of the exchange interaction gives the main contribution to the anisotropy of the spin–spin interaction. The observed anisotropy disagrees with the expected in the model of the isotropic exchange interaction between real spins. A feature of the EPR spectrum not described by the model of the isolated Nd–Nd dimers and reflecting the magnetization transfer between dimers is detected. The magnetization transfer due to both the relaxation transitions and the interdimer interaction is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号